Cargando…
Functional connectivity of language networks after perinatal stroke
Successful language acquisition during development is imperative for lifelong function. Complex language networks develop throughout childhood. Perinatal stroke may cause significant language disabilities but function can also be remarkably normal. Studying such very early brain injury populations m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536856/ https://www.ncbi.nlm.nih.gov/pubmed/31141787 http://dx.doi.org/10.1016/j.nicl.2019.101861 |
Sumario: | Successful language acquisition during development is imperative for lifelong function. Complex language networks develop throughout childhood. Perinatal stroke may cause significant language disabilities but function can also be remarkably normal. Studying such very early brain injury populations may inform developmental plasticity models of language networks. We examined functional connectivity (FC) of language networks in children with arterial and venous perinatal stroke and typically developing controls (TDC) in a population-based, controlled, cohort study. Resting state functional MRI was performed at 3 T (TR/TE = 2000/30 ms, 150 volumes, 3.6mm(3) voxels). Seed-based analyses used bilateral inferior frontal and superior temporal gyri. A subset of stroke participants completed clinical language testing. Sixty-six children participated (median age: 12.85±3.8y, range 6–19; arterial N = 17; venous N = 15; TDC N = 34]. Children with left hemisphere strokes had comparable FC in their right hemispheres compared to TDC. Inter- and intra-hemispheric connectivity strengths were similar between TDC and PVI but lower for AIS. Reduced FC was associated with poorer language comprehension. Language networks can be estimated using resting-state fMRI in children with perinatal stroke. Altered connectivity may occur in both hemispheres, is more pronounced with arterial lesions, and is associated with clinical function. Our results have implications for therapeutic language interventions after early stroke. |
---|