Cargando…

Promoter methylation changes and vascular dysfunction in pre-eclamptic umbilical vein

BACKGROUND: Hypertension is one of primary clinical presentations of pre-eclampsia. The occurrence and progress of hypertension are closely related to vascular dysfunction. However, information is limited regarding the pathological changes of vascular functions in pre-eclamptic fetuses. Human umbili...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Qinqin, Fan, Xiaorong, Xu, Ting, Li, Huan, He, Yun, Yang, Yuxian, Chen, Jie, Ding, Hongmei, Tao, Jianying, Xu, Zhice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537217/
https://www.ncbi.nlm.nih.gov/pubmed/31138298
http://dx.doi.org/10.1186/s13148-019-0685-2
Descripción
Sumario:BACKGROUND: Hypertension is one of primary clinical presentations of pre-eclampsia. The occurrence and progress of hypertension are closely related to vascular dysfunction. However, information is limited regarding the pathological changes of vascular functions in pre-eclamptic fetuses. Human umbilical cord vein was used to investigate the influence of pre-eclampsia on fetal blood vessels in this study. RESULTS: The present study found that the vasoconstriction responses to arginine vasopressin (AVP) and oxytocin (OXT) were attenuated in the pre-eclamptic umbilical vein as compared to in normal pregnancy, which was related to the downregulated AVP receptor 1a (AVPR1a), OXT receptor (OXTR), and protein kinase C isoform β (PKCβ), owing to the deactivated gene transcription, respectively. The deactivated AVPR1a, OXTR, and PKCB gene transcription were respectively linked with an increased DNA methylation within the gene promoter. CONCLUSIONS: To the best of our knowledge, this study first revealed that a hyper-methylation in gene promoter, leading to relatively reduced patterns of AVPR1a, OXTR, and PKCB expressions, which was responsible for the decreased sensitivity to AVP and OXT in the umbilical vein under conditions of pre-eclampsia. The data offered new and important information for further understanding the pathological features caused by pre-eclampsia in the fetal vascular system, as well as roles of epigenetic-mediated gene expression in umbilical vascular dysfunction.