Cargando…
Combining self-organizing maps and biplot analysis to preselect maize phenotypic components based on UAV high-throughput phenotyping platform
BACKGROUND: With environmental deterioration, natural resource scarcity, and rapid population growth, mankind is facing severe global food security problems. To meet future needs, it is necessary to accelerate progress in breeding for new varieties with high yield and strong resistance. However, the...
Autores principales: | Han, Liang, Yang, Guijun, Dai, Huayang, Yang, Hao, Xu, Bo, Li, Heli, Long, Huiling, Li, Zhenhai, Yang, Xiaodong, Zhao, Chunjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537385/ https://www.ncbi.nlm.nih.gov/pubmed/31149023 http://dx.doi.org/10.1186/s13007-019-0444-6 |
Ejemplares similares
-
Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach
por: Han, Liang, et al.
Publicado: (2018) -
Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data
por: Han, Liang, et al.
Publicado: (2019) -
Fuzzy Clustering of Maize Plant-Height Patterns Using Time Series of UAV Remote-Sensing Images and Variety Traits
por: Han, Liang, et al.
Publicado: (2019) -
Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits
por: Shu, Meiyan, et al.
Publicado: (2022) -
Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV)
por: Wang, Xiaqing, et al.
Publicado: (2019)