Cargando…

Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis

Background: The Clinical High Risk state for Psychosis (CHR-P) has become the cornerstone of modern preventive psychiatry. The next stage of clinical advancements rests on the ability to formulate a more accurate prognostic estimate at the individual subject level. Individual Participant Data Meta-A...

Descripción completa

Detalles Bibliográficos
Autores principales: Malda, Aaltsje, Boonstra, Nynke, Barf, Hans, de Jong, Steven, Aleman, Andre, Addington, Jean, Pruessner, Marita, Nieman, Dorien, de Haan, Lieuwe, Morrison, Anthony, Riecher-Rössler, Anita, Studerus, Erich, Ruhrmann, Stephan, Schultze-Lutter, Frauke, An, Suk Kyoon, Koike, Shinsuke, Kasai, Kiyoto, Nelson, Barnaby, McGorry, Patrick, Wood, Stephen, Lin, Ashleigh, Yung, Alison Y., Kotlicka-Antczak, Magdalena, Armando, Marco, Vicari, Stefano, Katsura, Masahiro, Matsumoto, Kazunori, Durston, Sarah, Ziermans, Tim, Wunderink, Lex, Ising, Helga, van der Gaag, Mark, Fusar-Poli, Paolo, Pijnenborg, Gerdina Hendrika Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537857/
https://www.ncbi.nlm.nih.gov/pubmed/31178767
http://dx.doi.org/10.3389/fpsyt.2019.00345
_version_ 1783422091178016768
author Malda, Aaltsje
Boonstra, Nynke
Barf, Hans
de Jong, Steven
Aleman, Andre
Addington, Jean
Pruessner, Marita
Nieman, Dorien
de Haan, Lieuwe
Morrison, Anthony
Riecher-Rössler, Anita
Studerus, Erich
Ruhrmann, Stephan
Schultze-Lutter, Frauke
An, Suk Kyoon
Koike, Shinsuke
Kasai, Kiyoto
Nelson, Barnaby
McGorry, Patrick
Wood, Stephen
Lin, Ashleigh
Yung, Alison Y.
Kotlicka-Antczak, Magdalena
Armando, Marco
Vicari, Stefano
Katsura, Masahiro
Matsumoto, Kazunori
Durston, Sarah
Ziermans, Tim
Wunderink, Lex
Ising, Helga
van der Gaag, Mark
Fusar-Poli, Paolo
Pijnenborg, Gerdina Hendrika Maria
author_facet Malda, Aaltsje
Boonstra, Nynke
Barf, Hans
de Jong, Steven
Aleman, Andre
Addington, Jean
Pruessner, Marita
Nieman, Dorien
de Haan, Lieuwe
Morrison, Anthony
Riecher-Rössler, Anita
Studerus, Erich
Ruhrmann, Stephan
Schultze-Lutter, Frauke
An, Suk Kyoon
Koike, Shinsuke
Kasai, Kiyoto
Nelson, Barnaby
McGorry, Patrick
Wood, Stephen
Lin, Ashleigh
Yung, Alison Y.
Kotlicka-Antczak, Magdalena
Armando, Marco
Vicari, Stefano
Katsura, Masahiro
Matsumoto, Kazunori
Durston, Sarah
Ziermans, Tim
Wunderink, Lex
Ising, Helga
van der Gaag, Mark
Fusar-Poli, Paolo
Pijnenborg, Gerdina Hendrika Maria
author_sort Malda, Aaltsje
collection PubMed
description Background: The Clinical High Risk state for Psychosis (CHR-P) has become the cornerstone of modern preventive psychiatry. The next stage of clinical advancements rests on the ability to formulate a more accurate prognostic estimate at the individual subject level. Individual Participant Data Meta-Analyses (IPD-MA) are robust evidence synthesis methods that can also offer powerful approaches to the development and validation of personalized prognostic models. The aim of the study was to develop and validate an individualized, clinically based prognostic model for forecasting transition to psychosis from a CHR-P stage. Methods: A literature search was performed between January 30, 2016, and February 6, 2016, consulting PubMed, Psychinfo, Picarta, Embase, and ISI Web of Science, using search terms (“ultra high risk” OR “clinical high risk” OR “at risk mental state”) AND [(conver* OR transition* OR onset OR emerg* OR develop*) AND psychosis] for both longitudinal and intervention CHR-P studies. Clinical knowledge was used to a priori select predictors: age, gender, CHR-P subgroup, the severity of attenuated positive psychotic symptoms, the severity of attenuated negative psychotic symptoms, and level of functioning at baseline. The model, thus, developed was validated with an extended form of internal validation. Results: Fifteen of the 43 studies identified agreed to share IPD, for a total sample size of 1,676. There was a high level of heterogeneity between the CHR-P studies with regard to inclusion criteria, type of assessment instruments, transition criteria, preventive treatment offered. The internally validated prognostic performance of the model was higher than chance but only moderate [Harrell’s C-statistic 0.655, 95% confidence interval (CIs), 0.627–0.682]. Conclusion: This is the first IPD-MA conducted in the largest samples of CHR-P ever collected to date. An individualized prognostic model based on clinical predictors available in clinical routine was developed and internally validated, reaching only moderate prognostic performance. Although personalized risk prediction is of great value in the clinical practice, future developments are essential, including the refinement of the prognostic model and its external validation. However, because of the current high diagnostic, prognostic, and therapeutic heterogeneity of CHR-P studies, IPD-MAs in this population may have an limited intrinsic power to deliver robust prognostic models.
format Online
Article
Text
id pubmed-6537857
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-65378572019-06-07 Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis Malda, Aaltsje Boonstra, Nynke Barf, Hans de Jong, Steven Aleman, Andre Addington, Jean Pruessner, Marita Nieman, Dorien de Haan, Lieuwe Morrison, Anthony Riecher-Rössler, Anita Studerus, Erich Ruhrmann, Stephan Schultze-Lutter, Frauke An, Suk Kyoon Koike, Shinsuke Kasai, Kiyoto Nelson, Barnaby McGorry, Patrick Wood, Stephen Lin, Ashleigh Yung, Alison Y. Kotlicka-Antczak, Magdalena Armando, Marco Vicari, Stefano Katsura, Masahiro Matsumoto, Kazunori Durston, Sarah Ziermans, Tim Wunderink, Lex Ising, Helga van der Gaag, Mark Fusar-Poli, Paolo Pijnenborg, Gerdina Hendrika Maria Front Psychiatry Psychiatry Background: The Clinical High Risk state for Psychosis (CHR-P) has become the cornerstone of modern preventive psychiatry. The next stage of clinical advancements rests on the ability to formulate a more accurate prognostic estimate at the individual subject level. Individual Participant Data Meta-Analyses (IPD-MA) are robust evidence synthesis methods that can also offer powerful approaches to the development and validation of personalized prognostic models. The aim of the study was to develop and validate an individualized, clinically based prognostic model for forecasting transition to psychosis from a CHR-P stage. Methods: A literature search was performed between January 30, 2016, and February 6, 2016, consulting PubMed, Psychinfo, Picarta, Embase, and ISI Web of Science, using search terms (“ultra high risk” OR “clinical high risk” OR “at risk mental state”) AND [(conver* OR transition* OR onset OR emerg* OR develop*) AND psychosis] for both longitudinal and intervention CHR-P studies. Clinical knowledge was used to a priori select predictors: age, gender, CHR-P subgroup, the severity of attenuated positive psychotic symptoms, the severity of attenuated negative psychotic symptoms, and level of functioning at baseline. The model, thus, developed was validated with an extended form of internal validation. Results: Fifteen of the 43 studies identified agreed to share IPD, for a total sample size of 1,676. There was a high level of heterogeneity between the CHR-P studies with regard to inclusion criteria, type of assessment instruments, transition criteria, preventive treatment offered. The internally validated prognostic performance of the model was higher than chance but only moderate [Harrell’s C-statistic 0.655, 95% confidence interval (CIs), 0.627–0.682]. Conclusion: This is the first IPD-MA conducted in the largest samples of CHR-P ever collected to date. An individualized prognostic model based on clinical predictors available in clinical routine was developed and internally validated, reaching only moderate prognostic performance. Although personalized risk prediction is of great value in the clinical practice, future developments are essential, including the refinement of the prognostic model and its external validation. However, because of the current high diagnostic, prognostic, and therapeutic heterogeneity of CHR-P studies, IPD-MAs in this population may have an limited intrinsic power to deliver robust prognostic models. Frontiers Media S.A. 2019-05-21 /pmc/articles/PMC6537857/ /pubmed/31178767 http://dx.doi.org/10.3389/fpsyt.2019.00345 Text en Copyright © 2019 Malda, Boonstra, Barf, de Jong, Aleman, Addington, Pruessner, Nieman, de Haan, Morrison, Riecher-Rössler, Studerus, Ruhrmann, Schultze-Lutter, An, Koike, Kasai, Nelson, McGorry, Wood, Lin, Yung, Kotlicka-Antczak, Armando, Vicari, Katsura, Matsumoto, Durston, Ziermans, Wunderink, Ising, van der Gaag, Fusar-Poli and Pijnenborg http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychiatry
Malda, Aaltsje
Boonstra, Nynke
Barf, Hans
de Jong, Steven
Aleman, Andre
Addington, Jean
Pruessner, Marita
Nieman, Dorien
de Haan, Lieuwe
Morrison, Anthony
Riecher-Rössler, Anita
Studerus, Erich
Ruhrmann, Stephan
Schultze-Lutter, Frauke
An, Suk Kyoon
Koike, Shinsuke
Kasai, Kiyoto
Nelson, Barnaby
McGorry, Patrick
Wood, Stephen
Lin, Ashleigh
Yung, Alison Y.
Kotlicka-Antczak, Magdalena
Armando, Marco
Vicari, Stefano
Katsura, Masahiro
Matsumoto, Kazunori
Durston, Sarah
Ziermans, Tim
Wunderink, Lex
Ising, Helga
van der Gaag, Mark
Fusar-Poli, Paolo
Pijnenborg, Gerdina Hendrika Maria
Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
title Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
title_full Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
title_fullStr Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
title_full_unstemmed Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
title_short Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
title_sort individualized prediction of transition to psychosis in 1,676 individuals at clinical high risk: development and validation of a multivariable prediction model based on individual patient data meta-analysis
topic Psychiatry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537857/
https://www.ncbi.nlm.nih.gov/pubmed/31178767
http://dx.doi.org/10.3389/fpsyt.2019.00345
work_keys_str_mv AT maldaaaltsje individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT boonstranynke individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT barfhans individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT dejongsteven individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT alemanandre individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT addingtonjean individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT pruessnermarita individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT niemandorien individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT dehaanlieuwe individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT morrisonanthony individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT riecherrossleranita individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT studeruserich individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT ruhrmannstephan individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT schultzelutterfrauke individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT ansukkyoon individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT koikeshinsuke individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT kasaikiyoto individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT nelsonbarnaby individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT mcgorrypatrick individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT woodstephen individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT linashleigh individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT yungalisony individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT kotlickaantczakmagdalena individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT armandomarco individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT vicaristefano individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT katsuramasahiro individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT matsumotokazunori individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT durstonsarah individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT ziermanstim individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT wunderinklex individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT isinghelga individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT vandergaagmark individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT fusarpolipaolo individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis
AT pijnenborggerdinahendrikamaria individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis