Cargando…
Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis
Background: The Clinical High Risk state for Psychosis (CHR-P) has become the cornerstone of modern preventive psychiatry. The next stage of clinical advancements rests on the ability to formulate a more accurate prognostic estimate at the individual subject level. Individual Participant Data Meta-A...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537857/ https://www.ncbi.nlm.nih.gov/pubmed/31178767 http://dx.doi.org/10.3389/fpsyt.2019.00345 |
_version_ | 1783422091178016768 |
---|---|
author | Malda, Aaltsje Boonstra, Nynke Barf, Hans de Jong, Steven Aleman, Andre Addington, Jean Pruessner, Marita Nieman, Dorien de Haan, Lieuwe Morrison, Anthony Riecher-Rössler, Anita Studerus, Erich Ruhrmann, Stephan Schultze-Lutter, Frauke An, Suk Kyoon Koike, Shinsuke Kasai, Kiyoto Nelson, Barnaby McGorry, Patrick Wood, Stephen Lin, Ashleigh Yung, Alison Y. Kotlicka-Antczak, Magdalena Armando, Marco Vicari, Stefano Katsura, Masahiro Matsumoto, Kazunori Durston, Sarah Ziermans, Tim Wunderink, Lex Ising, Helga van der Gaag, Mark Fusar-Poli, Paolo Pijnenborg, Gerdina Hendrika Maria |
author_facet | Malda, Aaltsje Boonstra, Nynke Barf, Hans de Jong, Steven Aleman, Andre Addington, Jean Pruessner, Marita Nieman, Dorien de Haan, Lieuwe Morrison, Anthony Riecher-Rössler, Anita Studerus, Erich Ruhrmann, Stephan Schultze-Lutter, Frauke An, Suk Kyoon Koike, Shinsuke Kasai, Kiyoto Nelson, Barnaby McGorry, Patrick Wood, Stephen Lin, Ashleigh Yung, Alison Y. Kotlicka-Antczak, Magdalena Armando, Marco Vicari, Stefano Katsura, Masahiro Matsumoto, Kazunori Durston, Sarah Ziermans, Tim Wunderink, Lex Ising, Helga van der Gaag, Mark Fusar-Poli, Paolo Pijnenborg, Gerdina Hendrika Maria |
author_sort | Malda, Aaltsje |
collection | PubMed |
description | Background: The Clinical High Risk state for Psychosis (CHR-P) has become the cornerstone of modern preventive psychiatry. The next stage of clinical advancements rests on the ability to formulate a more accurate prognostic estimate at the individual subject level. Individual Participant Data Meta-Analyses (IPD-MA) are robust evidence synthesis methods that can also offer powerful approaches to the development and validation of personalized prognostic models. The aim of the study was to develop and validate an individualized, clinically based prognostic model for forecasting transition to psychosis from a CHR-P stage. Methods: A literature search was performed between January 30, 2016, and February 6, 2016, consulting PubMed, Psychinfo, Picarta, Embase, and ISI Web of Science, using search terms (“ultra high risk” OR “clinical high risk” OR “at risk mental state”) AND [(conver* OR transition* OR onset OR emerg* OR develop*) AND psychosis] for both longitudinal and intervention CHR-P studies. Clinical knowledge was used to a priori select predictors: age, gender, CHR-P subgroup, the severity of attenuated positive psychotic symptoms, the severity of attenuated negative psychotic symptoms, and level of functioning at baseline. The model, thus, developed was validated with an extended form of internal validation. Results: Fifteen of the 43 studies identified agreed to share IPD, for a total sample size of 1,676. There was a high level of heterogeneity between the CHR-P studies with regard to inclusion criteria, type of assessment instruments, transition criteria, preventive treatment offered. The internally validated prognostic performance of the model was higher than chance but only moderate [Harrell’s C-statistic 0.655, 95% confidence interval (CIs), 0.627–0.682]. Conclusion: This is the first IPD-MA conducted in the largest samples of CHR-P ever collected to date. An individualized prognostic model based on clinical predictors available in clinical routine was developed and internally validated, reaching only moderate prognostic performance. Although personalized risk prediction is of great value in the clinical practice, future developments are essential, including the refinement of the prognostic model and its external validation. However, because of the current high diagnostic, prognostic, and therapeutic heterogeneity of CHR-P studies, IPD-MAs in this population may have an limited intrinsic power to deliver robust prognostic models. |
format | Online Article Text |
id | pubmed-6537857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65378572019-06-07 Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis Malda, Aaltsje Boonstra, Nynke Barf, Hans de Jong, Steven Aleman, Andre Addington, Jean Pruessner, Marita Nieman, Dorien de Haan, Lieuwe Morrison, Anthony Riecher-Rössler, Anita Studerus, Erich Ruhrmann, Stephan Schultze-Lutter, Frauke An, Suk Kyoon Koike, Shinsuke Kasai, Kiyoto Nelson, Barnaby McGorry, Patrick Wood, Stephen Lin, Ashleigh Yung, Alison Y. Kotlicka-Antczak, Magdalena Armando, Marco Vicari, Stefano Katsura, Masahiro Matsumoto, Kazunori Durston, Sarah Ziermans, Tim Wunderink, Lex Ising, Helga van der Gaag, Mark Fusar-Poli, Paolo Pijnenborg, Gerdina Hendrika Maria Front Psychiatry Psychiatry Background: The Clinical High Risk state for Psychosis (CHR-P) has become the cornerstone of modern preventive psychiatry. The next stage of clinical advancements rests on the ability to formulate a more accurate prognostic estimate at the individual subject level. Individual Participant Data Meta-Analyses (IPD-MA) are robust evidence synthesis methods that can also offer powerful approaches to the development and validation of personalized prognostic models. The aim of the study was to develop and validate an individualized, clinically based prognostic model for forecasting transition to psychosis from a CHR-P stage. Methods: A literature search was performed between January 30, 2016, and February 6, 2016, consulting PubMed, Psychinfo, Picarta, Embase, and ISI Web of Science, using search terms (“ultra high risk” OR “clinical high risk” OR “at risk mental state”) AND [(conver* OR transition* OR onset OR emerg* OR develop*) AND psychosis] for both longitudinal and intervention CHR-P studies. Clinical knowledge was used to a priori select predictors: age, gender, CHR-P subgroup, the severity of attenuated positive psychotic symptoms, the severity of attenuated negative psychotic symptoms, and level of functioning at baseline. The model, thus, developed was validated with an extended form of internal validation. Results: Fifteen of the 43 studies identified agreed to share IPD, for a total sample size of 1,676. There was a high level of heterogeneity between the CHR-P studies with regard to inclusion criteria, type of assessment instruments, transition criteria, preventive treatment offered. The internally validated prognostic performance of the model was higher than chance but only moderate [Harrell’s C-statistic 0.655, 95% confidence interval (CIs), 0.627–0.682]. Conclusion: This is the first IPD-MA conducted in the largest samples of CHR-P ever collected to date. An individualized prognostic model based on clinical predictors available in clinical routine was developed and internally validated, reaching only moderate prognostic performance. Although personalized risk prediction is of great value in the clinical practice, future developments are essential, including the refinement of the prognostic model and its external validation. However, because of the current high diagnostic, prognostic, and therapeutic heterogeneity of CHR-P studies, IPD-MAs in this population may have an limited intrinsic power to deliver robust prognostic models. Frontiers Media S.A. 2019-05-21 /pmc/articles/PMC6537857/ /pubmed/31178767 http://dx.doi.org/10.3389/fpsyt.2019.00345 Text en Copyright © 2019 Malda, Boonstra, Barf, de Jong, Aleman, Addington, Pruessner, Nieman, de Haan, Morrison, Riecher-Rössler, Studerus, Ruhrmann, Schultze-Lutter, An, Koike, Kasai, Nelson, McGorry, Wood, Lin, Yung, Kotlicka-Antczak, Armando, Vicari, Katsura, Matsumoto, Durston, Ziermans, Wunderink, Ising, van der Gaag, Fusar-Poli and Pijnenborg http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychiatry Malda, Aaltsje Boonstra, Nynke Barf, Hans de Jong, Steven Aleman, Andre Addington, Jean Pruessner, Marita Nieman, Dorien de Haan, Lieuwe Morrison, Anthony Riecher-Rössler, Anita Studerus, Erich Ruhrmann, Stephan Schultze-Lutter, Frauke An, Suk Kyoon Koike, Shinsuke Kasai, Kiyoto Nelson, Barnaby McGorry, Patrick Wood, Stephen Lin, Ashleigh Yung, Alison Y. Kotlicka-Antczak, Magdalena Armando, Marco Vicari, Stefano Katsura, Masahiro Matsumoto, Kazunori Durston, Sarah Ziermans, Tim Wunderink, Lex Ising, Helga van der Gaag, Mark Fusar-Poli, Paolo Pijnenborg, Gerdina Hendrika Maria Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis |
title | Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis |
title_full | Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis |
title_fullStr | Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis |
title_full_unstemmed | Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis |
title_short | Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis |
title_sort | individualized prediction of transition to psychosis in 1,676 individuals at clinical high risk: development and validation of a multivariable prediction model based on individual patient data meta-analysis |
topic | Psychiatry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537857/ https://www.ncbi.nlm.nih.gov/pubmed/31178767 http://dx.doi.org/10.3389/fpsyt.2019.00345 |
work_keys_str_mv | AT maldaaaltsje individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT boonstranynke individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT barfhans individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT dejongsteven individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT alemanandre individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT addingtonjean individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT pruessnermarita individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT niemandorien individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT dehaanlieuwe individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT morrisonanthony individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT riecherrossleranita individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT studeruserich individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT ruhrmannstephan individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT schultzelutterfrauke individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT ansukkyoon individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT koikeshinsuke individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT kasaikiyoto individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT nelsonbarnaby individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT mcgorrypatrick individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT woodstephen individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT linashleigh individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT yungalisony individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT kotlickaantczakmagdalena individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT armandomarco individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT vicaristefano individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT katsuramasahiro individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT matsumotokazunori individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT durstonsarah individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT ziermanstim individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT wunderinklex individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT isinghelga individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT vandergaagmark individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT fusarpolipaolo individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis AT pijnenborggerdinahendrikamaria individualizedpredictionoftransitiontopsychosisin1676individualsatclinicalhighriskdevelopmentandvalidationofamultivariablepredictionmodelbasedonindividualpatientdatametaanalysis |