Cargando…
Beyond core object recognition: Recurrent processes account for object recognition under occlusion
Core object recognition, the ability to rapidly recognize objects despite variations in their appearance, is largely solved through the feedforward processing of visual information. Deep neural networks are shown to achieve human-level performance in these tasks, and explain the primate brain repres...
Autores principales: | Rajaei, Karim, Mohsenzadeh, Yalda, Ebrahimpour, Reza, Khaligh-Razavi, Seyed-Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538196/ https://www.ncbi.nlm.nih.gov/pubmed/31091234 http://dx.doi.org/10.1371/journal.pcbi.1007001 |
Ejemplares similares
-
How Can Selection of Biologically Inspired Features Improve the Performance of a Robust Object Recognition Model?
por: Ghodrati, Masoud, et al.
Publicado: (2012) -
Feedforward object-vision models only tolerate small image variations compared to human
por: Ghodrati, Masoud, et al.
Publicado: (2014) -
The importance of visual features in generic vs. specialized object recognition: a computational study
por: Ghodrati, Masoud, et al.
Publicado: (2014) -
A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans
por: Farzmahdi, Amirhossein, et al.
Publicado: (2016) -
A Stable Biologically Motivated Learning Mechanism for Visual Feature Extraction to Handle Facial Categorization
por: Rajaei, Karim, et al.
Publicado: (2012)