Cargando…
TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance
Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator γ coactivator 1-α (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury....
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538327/ https://www.ncbi.nlm.nih.gov/pubmed/30870143 http://dx.doi.org/10.1172/jci.insight.126749 |
_version_ | 1783422170051903488 |
---|---|
author | Lynch, Matthew R. Tran, Mei T. Ralto, Kenneth M. Zsengeller, Zsuzsanna K. Raman, Vinod Bhasin, Swati S. Sun, Nuo Chen, Xiuying Brown, Daniel Rovira, Ilsa I. Taguchi, Kensei Brooks, Craig R. Stillman, Isaac E. Bhasin, Manoj K. Finkel, Toren Parikh, Samir M. |
author_facet | Lynch, Matthew R. Tran, Mei T. Ralto, Kenneth M. Zsengeller, Zsuzsanna K. Raman, Vinod Bhasin, Swati S. Sun, Nuo Chen, Xiuying Brown, Daniel Rovira, Ilsa I. Taguchi, Kensei Brooks, Craig R. Stillman, Isaac E. Bhasin, Manoj K. Finkel, Toren Parikh, Samir M. |
author_sort | Lynch, Matthew R. |
collection | PubMed |
description | Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator γ coactivator 1-α (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here, we report that PGC1α’s induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α-KO tubular cells were sensitized to the genotoxic stressor cisplatin, whereas Tg cells were protected. The biosensor mitochondrial-targeted Keima (mtKeima) unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α and its downstream mediator NAD(+) counteracted this effect. PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α’s reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a potentially novel target for renal tubular stress resistance. |
format | Online Article Text |
id | pubmed-6538327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Clinical Investigation |
record_format | MEDLINE/PubMed |
spelling | pubmed-65383272019-05-31 TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance Lynch, Matthew R. Tran, Mei T. Ralto, Kenneth M. Zsengeller, Zsuzsanna K. Raman, Vinod Bhasin, Swati S. Sun, Nuo Chen, Xiuying Brown, Daniel Rovira, Ilsa I. Taguchi, Kensei Brooks, Craig R. Stillman, Isaac E. Bhasin, Manoj K. Finkel, Toren Parikh, Samir M. JCI Insight Research Article Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator γ coactivator 1-α (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here, we report that PGC1α’s induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α-KO tubular cells were sensitized to the genotoxic stressor cisplatin, whereas Tg cells were protected. The biosensor mitochondrial-targeted Keima (mtKeima) unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α and its downstream mediator NAD(+) counteracted this effect. PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α’s reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a potentially novel target for renal tubular stress resistance. American Society for Clinical Investigation 2019-04-18 /pmc/articles/PMC6538327/ /pubmed/30870143 http://dx.doi.org/10.1172/jci.insight.126749 Text en © 2019 Lynch et al. http://creativecommons.org/licenses/by/4.0/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Lynch, Matthew R. Tran, Mei T. Ralto, Kenneth M. Zsengeller, Zsuzsanna K. Raman, Vinod Bhasin, Swati S. Sun, Nuo Chen, Xiuying Brown, Daniel Rovira, Ilsa I. Taguchi, Kensei Brooks, Craig R. Stillman, Isaac E. Bhasin, Manoj K. Finkel, Toren Parikh, Samir M. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance |
title | TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance |
title_full | TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance |
title_fullStr | TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance |
title_full_unstemmed | TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance |
title_short | TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance |
title_sort | tfeb-driven lysosomal biogenesis is pivotal for pgc1α-dependent renal stress resistance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538327/ https://www.ncbi.nlm.nih.gov/pubmed/30870143 http://dx.doi.org/10.1172/jci.insight.126749 |
work_keys_str_mv | AT lynchmatthewr tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT tranmeit tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT raltokennethm tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT zsengellerzsuzsannak tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT ramanvinod tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT bhasinswatis tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT sunnuo tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT chenxiuying tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT browndaniel tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT rovirailsai tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT taguchikensei tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT brookscraigr tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT stillmanisaace tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT bhasinmanojk tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT finkeltoren tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance AT parikhsamirm tfebdrivenlysosomalbiogenesisispivotalforpgc1adependentrenalstressresistance |