Cargando…
Fast and flexible sequence induction in spiking neural networks via rapid excitability changes
Cognitive flexibility likely depends on modulation of the dynamics underlying how biological neural networks process information. While dynamics can be reshaped by gradually modifying connectivity, less is known about mechanisms operating on faster timescales. A compelling entrypoint to this problem...
Autores principales: | Pang, Rich, Fairhall, Adrienne L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538377/ https://www.ncbi.nlm.nih.gov/pubmed/31081753 http://dx.doi.org/10.7554/eLife.44324 |
Ejemplares similares
-
The geometry of robustness in spiking neural networks
por: Calaim, Nuno, et al.
Publicado: (2022) -
Fast and flexible estimation of effective migration surfaces
por: Marcus, Joseph, et al.
Publicado: (2021) -
Flexible theta sequence compression mediated via phase precessing interneurons
por: Chadwick, Angus, et al.
Publicado: (2016) -
PARROT is a flexible recurrent neural network framework for analysis of large protein datasets
por: Griffith, Daniel, et al.
Publicado: (2021) -
Learning recurrent dynamics in spiking networks
por: Kim, Christopher M, et al.
Publicado: (2018)