Cargando…
CollaboNet: collaboration of deep neural networks for biomedical named entity recognition
BACKGROUND: Finding biomedical named entities is one of the most essential tasks in biomedical text mining. Recently, deep learning-based approaches have been applied to biomedical named entity recognition (BioNER) and showed promising results. However, as deep learning approaches need an abundant a...
Autores principales: | Yoon, Wonjin, So, Chan Ho, Lee, Jinhyuk, Kang, Jaewoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538547/ https://www.ncbi.nlm.nih.gov/pubmed/31138109 http://dx.doi.org/10.1186/s12859-019-2813-6 |
Ejemplares similares
-
BERN2: an advanced neural biomedical named entity recognition and normalization tool
por: Sung, Mujeen, et al.
Publicado: (2022) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019) -
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Improving deep learning method for biomedical named entity recognition by using entity definition information
por: Xiong, Ying, et al.
Publicado: (2021)