Cargando…
Deep Learning Convolutional Neural Networks for the Automatic Quantification of Muscle Fat Infiltration Following Whiplash Injury
Muscle fat infiltration (MFI) of the deep cervical spine extensors has been observed in cervical spine conditions using time-consuming and rater-dependent manual techniques. Deep learning convolutional neural network (CNN) models have demonstrated state-of-the-art performance in segmentation tasks....
Autores principales: | Weber, Kenneth A., Smith, Andrew C., Wasielewski, Marie, Eghtesad, Kamran, Upadhyayula, Pranav A., Wintermark, Max, Hastie, Trevor J., Parrish, Todd B., Mackey, Sean, Elliott, James M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538618/ https://www.ncbi.nlm.nih.gov/pubmed/31138878 http://dx.doi.org/10.1038/s41598-019-44416-8 |
Ejemplares similares
-
Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions
por: Weber, Kenneth A., et al.
Publicado: (2021) -
Muscle fat infiltration following whiplash: A computed tomography and magnetic resonance imaging comparison
por: Elliott, James M., et al.
Publicado: (2020) -
Confirming the geography of fatty infiltration in the deep cervical extensor muscles in whiplash recovery
por: Smith, Andrew C., et al.
Publicado: (2020) -
Macromolecular changes in spinal cord white matter characterize whiplash outcome at 1-year post motor vehicle collision
por: Hoggarth, Mark A., et al.
Publicado: (2020) -
Motor vehicle crash reconstruction: Does it relate to the heterogeneity of whiplash recovery?
por: Elliott, James M., et al.
Publicado: (2019)