Cargando…

Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma

Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early...

Descripción completa

Detalles Bibliográficos
Autores principales: Deulofeu, Meritxell, Kolářová, Lenka, Salvadó, Victoria, María Peña-Méndez, Eladia, Almáši, Martina, Štork, Martin, Pour, Luděk, Boadas-Vaello, Pere, Ševčíková, Sabina, Havel, Josef, Vaňhara, Petr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538619/
https://www.ncbi.nlm.nih.gov/pubmed/31138828
http://dx.doi.org/10.1038/s41598-019-44215-1
_version_ 1783422200811880448
author Deulofeu, Meritxell
Kolářová, Lenka
Salvadó, Victoria
María Peña-Méndez, Eladia
Almáši, Martina
Štork, Martin
Pour, Luděk
Boadas-Vaello, Pere
Ševčíková, Sabina
Havel, Josef
Vaňhara, Petr
author_facet Deulofeu, Meritxell
Kolářová, Lenka
Salvadó, Victoria
María Peña-Méndez, Eladia
Almáši, Martina
Štork, Martin
Pour, Luděk
Boadas-Vaello, Pere
Ševčíková, Sabina
Havel, Josef
Vaňhara, Petr
author_sort Deulofeu, Meritxell
collection PubMed
description Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
format Online
Article
Text
id pubmed-6538619
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65386192019-06-06 Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma Deulofeu, Meritxell Kolářová, Lenka Salvadó, Victoria María Peña-Méndez, Eladia Almáši, Martina Štork, Martin Pour, Luděk Boadas-Vaello, Pere Ševčíková, Sabina Havel, Josef Vaňhara, Petr Sci Rep Article Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics. Nature Publishing Group UK 2019-05-28 /pmc/articles/PMC6538619/ /pubmed/31138828 http://dx.doi.org/10.1038/s41598-019-44215-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Deulofeu, Meritxell
Kolářová, Lenka
Salvadó, Victoria
María Peña-Méndez, Eladia
Almáši, Martina
Štork, Martin
Pour, Luděk
Boadas-Vaello, Pere
Ševčíková, Sabina
Havel, Josef
Vaňhara, Petr
Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
title Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
title_full Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
title_fullStr Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
title_full_unstemmed Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
title_short Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
title_sort rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538619/
https://www.ncbi.nlm.nih.gov/pubmed/31138828
http://dx.doi.org/10.1038/s41598-019-44215-1
work_keys_str_mv AT deulofeumeritxell rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT kolarovalenka rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT salvadovictoria rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT mariapenamendezeladia rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT almasimartina rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT storkmartin rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT pourludek rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT boadasvaellopere rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT sevcikovasabina rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT haveljosef rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma
AT vanharapetr rapiddiscriminationofmultiplemyelomapatientsbyartificialneuralnetworkscoupledwithmassspectrometryofperipheralbloodplasma