Cargando…
Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538620/ https://www.ncbi.nlm.nih.gov/pubmed/31138802 http://dx.doi.org/10.1038/s41467-019-10185-1 |
_version_ | 1783422201047810048 |
---|---|
author | Connolly, B. M. Aragones-Anglada, M. Gandara-Loe, J. Danaf, N. A. Lamb, D. C. Mehta, J. P. Vulpe, D. Wuttke, S. Silvestre-Albero, J. Moghadam, P. Z. Wheatley, A. E. H. Fairen-Jimenez, D. |
author_facet | Connolly, B. M. Aragones-Anglada, M. Gandara-Loe, J. Danaf, N. A. Lamb, D. C. Mehta, J. P. Vulpe, D. Wuttke, S. Silvestre-Albero, J. Moghadam, P. Z. Wheatley, A. E. H. Fairen-Jimenez, D. |
author_sort | Connolly, B. M. |
collection | PubMed |
description | Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths’ macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage. |
format | Online Article Text |
id | pubmed-6538620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-65386202019-05-30 Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage Connolly, B. M. Aragones-Anglada, M. Gandara-Loe, J. Danaf, N. A. Lamb, D. C. Mehta, J. P. Vulpe, D. Wuttke, S. Silvestre-Albero, J. Moghadam, P. Z. Wheatley, A. E. H. Fairen-Jimenez, D. Nat Commun Article Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths’ macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage. Nature Publishing Group UK 2019-05-28 /pmc/articles/PMC6538620/ /pubmed/31138802 http://dx.doi.org/10.1038/s41467-019-10185-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Connolly, B. M. Aragones-Anglada, M. Gandara-Loe, J. Danaf, N. A. Lamb, D. C. Mehta, J. P. Vulpe, D. Wuttke, S. Silvestre-Albero, J. Moghadam, P. Z. Wheatley, A. E. H. Fairen-Jimenez, D. Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
title | Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
title_full | Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
title_fullStr | Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
title_full_unstemmed | Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
title_short | Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
title_sort | tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538620/ https://www.ncbi.nlm.nih.gov/pubmed/31138802 http://dx.doi.org/10.1038/s41467-019-10185-1 |
work_keys_str_mv | AT connollybm tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT aragonesangladam tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT gandaraloej tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT danafna tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT lambdc tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT mehtajp tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT vulped tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT wuttkes tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT silvestrealberoj tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT moghadampz tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT wheatleyaeh tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage AT fairenjimenezd tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage |