Cargando…

Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage

Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking...

Descripción completa

Detalles Bibliográficos
Autores principales: Connolly, B. M., Aragones-Anglada, M., Gandara-Loe, J., Danaf, N. A., Lamb, D. C., Mehta, J. P., Vulpe, D., Wuttke, S., Silvestre-Albero, J., Moghadam, P. Z., Wheatley, A. E. H., Fairen-Jimenez, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538620/
https://www.ncbi.nlm.nih.gov/pubmed/31138802
http://dx.doi.org/10.1038/s41467-019-10185-1
_version_ 1783422201047810048
author Connolly, B. M.
Aragones-Anglada, M.
Gandara-Loe, J.
Danaf, N. A.
Lamb, D. C.
Mehta, J. P.
Vulpe, D.
Wuttke, S.
Silvestre-Albero, J.
Moghadam, P. Z.
Wheatley, A. E. H.
Fairen-Jimenez, D.
author_facet Connolly, B. M.
Aragones-Anglada, M.
Gandara-Loe, J.
Danaf, N. A.
Lamb, D. C.
Mehta, J. P.
Vulpe, D.
Wuttke, S.
Silvestre-Albero, J.
Moghadam, P. Z.
Wheatley, A. E. H.
Fairen-Jimenez, D.
author_sort Connolly, B. M.
collection PubMed
description Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths’ macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage.
format Online
Article
Text
id pubmed-6538620
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65386202019-05-30 Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage Connolly, B. M. Aragones-Anglada, M. Gandara-Loe, J. Danaf, N. A. Lamb, D. C. Mehta, J. P. Vulpe, D. Wuttke, S. Silvestre-Albero, J. Moghadam, P. Z. Wheatley, A. E. H. Fairen-Jimenez, D. Nat Commun Article Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths’ macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage. Nature Publishing Group UK 2019-05-28 /pmc/articles/PMC6538620/ /pubmed/31138802 http://dx.doi.org/10.1038/s41467-019-10185-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Connolly, B. M.
Aragones-Anglada, M.
Gandara-Loe, J.
Danaf, N. A.
Lamb, D. C.
Mehta, J. P.
Vulpe, D.
Wuttke, S.
Silvestre-Albero, J.
Moghadam, P. Z.
Wheatley, A. E. H.
Fairen-Jimenez, D.
Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
title Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
title_full Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
title_fullStr Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
title_full_unstemmed Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
title_short Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
title_sort tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538620/
https://www.ncbi.nlm.nih.gov/pubmed/31138802
http://dx.doi.org/10.1038/s41467-019-10185-1
work_keys_str_mv AT connollybm tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT aragonesangladam tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT gandaraloej tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT danafna tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT lambdc tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT mehtajp tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT vulped tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT wuttkes tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT silvestrealberoj tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT moghadampz tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT wheatleyaeh tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage
AT fairenjimenezd tuningporosityinmacroscopicmonolithicmetalorganicframeworksforexceptionalnaturalgasstorage