Cargando…

DNA Methylation of Mouse Testes, Cardiac and Lung Tissue During Long-Term Microgravity Simulation

Under microgravity, the gene expression levels vary in different types of cells; however, the reasons for this have not been sufficiently studied. The aim of this work was to evaluate the methylation of CpG islands in the promoter regions of the genes encoding some cytoskeletal proteins, the total m...

Descripción completa

Detalles Bibliográficos
Autores principales: Loktev, Sergey S., Ogneva, Irina V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538624/
https://www.ncbi.nlm.nih.gov/pubmed/31138883
http://dx.doi.org/10.1038/s41598-019-44468-w
Descripción
Sumario:Under microgravity, the gene expression levels vary in different types of cells; however, the reasons for this have not been sufficiently studied. The aim of this work was to evaluate the methylation of CpG islands in the promoter regions of the genes encoding some cytoskeletal proteins, the total methylation and 5 hmC levels, and the levels of enzymes that regulate these processes in the testes, heart, and lungs in mice after a 30-day microgravity modeling by antiorthostatic suspension and after a subsequent 12-hour recovery as well as in the corresponding control group and identical groups treated with essential phospholipids. The obtained results indicate that under modeling microgravity in the examined tissues a decrease of cytoskeletal gene expression (mainly in the heart and lungs tissues) correlated with an increase in the CpG islands methylation and an increase of the expression (mainly in the testes tissue) – with a decrease of the CpG-methylation, despite of the fact that in the examined tissues took place a decrease of the content methylases and demethylases. But the deacetylase HDAC1 content increased in the heart and lungs tissues and decreased in the testes, letting us suggest its participation in the regulation of the methylation level under microgravity conditions.