Cargando…

Enhanced Z-isomerization of tomato lycopene through the optimal combination of food ingredients

In tomatoes, most lycopene is present in the all-E-configuration and shows very low bioavailability, whereas the Z-isomers show higher bioavailability. Hence, for health reasons, it is expected that the ingestion of lycopene Z-isomers is preferable. Very recently, it was reported that onion and poss...

Descripción completa

Detalles Bibliográficos
Autores principales: Honda, Masaki, Kageyama, Hakuto, Hibino, Takashi, Takemura, Ryota, Goto, Motonobu, Fukaya, Tetsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538647/
https://www.ncbi.nlm.nih.gov/pubmed/31138872
http://dx.doi.org/10.1038/s41598-019-44177-4
Descripción
Sumario:In tomatoes, most lycopene is present in the all-E-configuration and shows very low bioavailability, whereas the Z-isomers show higher bioavailability. Hence, for health reasons, it is expected that the ingestion of lycopene Z-isomers is preferable. Very recently, it was reported that onion and possibly garlic promoted thermal Z-isomerization of (all-E)-lycopene but there are no reports for other food ingredients. Here we show new food ingredients that enhance thermal Z-isomerization of lycopene in tomatoes and from the results, we guessed some causative components having the Z-isomerization promoting effect. A comprehensive investigation of food ingredients revealed that some vegetables (Allium sp., Brassica sp., and Raphanus sp.), shiitake mushroom (Lentinus edodes), and some edible seaweeds (Saccharina sp. and Ecklonia sp.) markedly promoted Z-isomerization of (all-E)-lycopene in tomato puree with heating at 80 °C for 1 h. Moreover, it was revealed that polysulfides, isothiocyanates, carbon disulfide, and iodine, which were commonly contained in the above food ingredients in considerable quantity, enhanced thermal Z-isomerization of (all-E)-lycopene. Our findings on the food ingredients and the food-derived catalysts having a carotenoid Z-isomerization promoting effect are important, not only for the food, drink, and dietary supplement manufacturing industries, but also for daily home cooking.