Cargando…
Physically informed artificial neural networks for atomistic modeling of materials
Large-scale atomistic computer simulations of materials heavily rely on interatomic potentials predicting the energy and Newtonian forces on atoms. Traditional interatomic potentials are based on physical intuition but contain few adjustable parameters and are usually not accurate. The emerging mach...
Autores principales: | Pun, G. P. Purja, Batra, R., Ramprasad, R., Mishin, Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538760/ https://www.ncbi.nlm.nih.gov/pubmed/31138813 http://dx.doi.org/10.1038/s41467-019-10343-5 |
Ejemplares similares
-
Uncertainty quantification for predictions of atomistic neural networks
por: Vazquez-Salazar, Luis Itza, et al.
Publicado: (2022) -
First-Principle and Atomistic Modelling in Materials Science
por: Posselt, Matthias
Publicado: (2021) -
Editorial: Artificial Neural Networks as Models of Neural Information Processing
por: van Gerven, Marcel, et al.
Publicado: (2017) -
Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems
por: Spicher, Sebastian, et al.
Publicado: (2020) -
Towards an atomistic understanding of disordered carbon electrode materials
por: Deringer, Volker L., et al.
Publicado: (2018)