Cargando…

CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells

Human neural stem cells (NSCs) offer therapeutic potential for neurodegenerative diseases, such as inherited monogenic nervous system disorders, and neural injuries. Gene editing in NSCs (GE-NSCs) could enhance their therapeutic potential. We show that NSCs are amenable to gene targeting at multiple...

Descripción completa

Detalles Bibliográficos
Autores principales: Dever, Daniel P., Scharenberg, Samantha G., Camarena, Joab, Kildebeck, Eric J., Clark, Joseph T., Martin, Renata M., Bak, Rasmus O., Tang, Yuming, Dohse, Monika, Birgmeier, Johannes A., Jagadeesh, Karthik A., Bejerano, Gill, Tsukamoto, Ann, Gomez-Ospina, Natalia, Uchida, Nobuko, Porteus, Matthew H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538928/
https://www.ncbi.nlm.nih.gov/pubmed/31132746
http://dx.doi.org/10.1016/j.isci.2019.04.036
_version_ 1783422266505166848
author Dever, Daniel P.
Scharenberg, Samantha G.
Camarena, Joab
Kildebeck, Eric J.
Clark, Joseph T.
Martin, Renata M.
Bak, Rasmus O.
Tang, Yuming
Dohse, Monika
Birgmeier, Johannes A.
Jagadeesh, Karthik A.
Bejerano, Gill
Tsukamoto, Ann
Gomez-Ospina, Natalia
Uchida, Nobuko
Porteus, Matthew H.
author_facet Dever, Daniel P.
Scharenberg, Samantha G.
Camarena, Joab
Kildebeck, Eric J.
Clark, Joseph T.
Martin, Renata M.
Bak, Rasmus O.
Tang, Yuming
Dohse, Monika
Birgmeier, Johannes A.
Jagadeesh, Karthik A.
Bejerano, Gill
Tsukamoto, Ann
Gomez-Ospina, Natalia
Uchida, Nobuko
Porteus, Matthew H.
author_sort Dever, Daniel P.
collection PubMed
description Human neural stem cells (NSCs) offer therapeutic potential for neurodegenerative diseases, such as inherited monogenic nervous system disorders, and neural injuries. Gene editing in NSCs (GE-NSCs) could enhance their therapeutic potential. We show that NSCs are amenable to gene targeting at multiple loci using Cas9 mRNA with synthetic chemically modified guide RNAs along with DNA donor templates. Transplantation of GE-NSC into oligodendrocyte mutant shiverer-immunodeficient mice showed that GE-NSCs migrate and differentiate into astrocytes, neurons, and myelin-producing oligodendrocytes, highlighting the fact that GE-NSCs retain their NSC characteristics of self-renewal and site-specific global migration and differentiation. To show the therapeutic potential of GE-NSCs, we generated GALC lysosomal enzyme overexpressing GE-NSCs that are able to cross-correct GALC enzyme activity through the mannose-6-phosphate receptor pathway. These GE-NSCs have the potential to be an investigational cell and gene therapy for a range of neurodegenerative disorders and injuries of the central nervous system, including lysosomal storage disorders.
format Online
Article
Text
id pubmed-6538928
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65389282019-06-03 CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells Dever, Daniel P. Scharenberg, Samantha G. Camarena, Joab Kildebeck, Eric J. Clark, Joseph T. Martin, Renata M. Bak, Rasmus O. Tang, Yuming Dohse, Monika Birgmeier, Johannes A. Jagadeesh, Karthik A. Bejerano, Gill Tsukamoto, Ann Gomez-Ospina, Natalia Uchida, Nobuko Porteus, Matthew H. iScience Article Human neural stem cells (NSCs) offer therapeutic potential for neurodegenerative diseases, such as inherited monogenic nervous system disorders, and neural injuries. Gene editing in NSCs (GE-NSCs) could enhance their therapeutic potential. We show that NSCs are amenable to gene targeting at multiple loci using Cas9 mRNA with synthetic chemically modified guide RNAs along with DNA donor templates. Transplantation of GE-NSC into oligodendrocyte mutant shiverer-immunodeficient mice showed that GE-NSCs migrate and differentiate into astrocytes, neurons, and myelin-producing oligodendrocytes, highlighting the fact that GE-NSCs retain their NSC characteristics of self-renewal and site-specific global migration and differentiation. To show the therapeutic potential of GE-NSCs, we generated GALC lysosomal enzyme overexpressing GE-NSCs that are able to cross-correct GALC enzyme activity through the mannose-6-phosphate receptor pathway. These GE-NSCs have the potential to be an investigational cell and gene therapy for a range of neurodegenerative disorders and injuries of the central nervous system, including lysosomal storage disorders. Elsevier 2019-05-04 /pmc/articles/PMC6538928/ /pubmed/31132746 http://dx.doi.org/10.1016/j.isci.2019.04.036 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dever, Daniel P.
Scharenberg, Samantha G.
Camarena, Joab
Kildebeck, Eric J.
Clark, Joseph T.
Martin, Renata M.
Bak, Rasmus O.
Tang, Yuming
Dohse, Monika
Birgmeier, Johannes A.
Jagadeesh, Karthik A.
Bejerano, Gill
Tsukamoto, Ann
Gomez-Ospina, Natalia
Uchida, Nobuko
Porteus, Matthew H.
CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells
title CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells
title_full CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells
title_fullStr CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells
title_full_unstemmed CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells
title_short CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells
title_sort crispr/cas9 genome engineering in engraftable human brain-derived neural stem cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538928/
https://www.ncbi.nlm.nih.gov/pubmed/31132746
http://dx.doi.org/10.1016/j.isci.2019.04.036
work_keys_str_mv AT deverdanielp crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT scharenbergsamanthag crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT camarenajoab crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT kildebeckericj crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT clarkjosepht crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT martinrenatam crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT bakrasmuso crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT tangyuming crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT dohsemonika crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT birgmeierjohannesa crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT jagadeeshkarthika crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT bejeranogill crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT tsukamotoann crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT gomezospinanatalia crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT uchidanobuko crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells
AT porteusmatthewh crisprcas9genomeengineeringinengraftablehumanbrainderivedneuralstemcells