Cargando…
Kinetics of angiotensin -1 converting enzyme inhibition and antioxidative properties of Azadirachta indica seed protein hydrolysates
Neem (Azadirachta indica) seed protein hydrolysates were investigated for in vitro antioxidant and angiotensin 1-converting enzyme (ACE)-inhibitory activities. Neem seed proteins were hydrolysed using pepsin, trypsin and Alcalase. The degree of pepsin hydrolysis of neem seed protein was significantl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538965/ https://www.ncbi.nlm.nih.gov/pubmed/31193663 http://dx.doi.org/10.1016/j.heliyon.2019.e01747 |
Sumario: | Neem (Azadirachta indica) seed protein hydrolysates were investigated for in vitro antioxidant and angiotensin 1-converting enzyme (ACE)-inhibitory activities. Neem seed proteins were hydrolysed using pepsin, trypsin and Alcalase. The degree of pepsin hydrolysis of neem seed protein was significantly higher (p < 0.05) than those of trypsin and Alcalase hydrolysis. Proteolytic hydrolysis of the isolate resulted in hydrolysates with improved Arg/Lys ratio, with pepsin hydrolysates still being able to maintain an acceptable level of essential amino acids comparable to that of the isolate. At 2.5 mg/mL, pepsin neem seed protein hydrolysate (NSPH) demonstrated the strongest antioxidant activity with 67.15 % and 50.07 % DPPH- and superoxide anion radical-scavenging activities, respectively, while trypsin NSPH had the highest ferric-reducing power. Using N-[3-(2-furyl)acryloyl]-L-phenylalanyl-glycyl-glycine (FAPGG) as substrate, NSPHs strongly inhibited ACE (69.20–80.39 %) in a concentration-dependent manner. Pepsin NSPH had higher ACE-inhibitory activity than trypsin and Alcalase NSPHs. Kinetic studies showed the mechanism of ACE inhibition to be mixed-type with Ki values of 0.62, 0.84, 1.5 for pepsin, trypsin and alcalase NSPH, respectively. These results suggest that NSPH can be used as a potential nutraceutical with antioxidant capacity and inhibitory activity against ACE. |
---|