Cargando…

Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall

We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified sever...

Descripción completa

Detalles Bibliográficos
Autores principales: Salinas-Torres, Víctor M., Gallardo-Blanco, Hugo L., Salinas-Torres, Rafael A., Cerda-Flores, Ricardo M., Lugo-Trampe, José J., Villarreal-Martínez, Daniel Z., Martínez de Villarreal, Laura E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539040/
https://www.ncbi.nlm.nih.gov/pubmed/31075877
http://dx.doi.org/10.3390/ijms20092295
_version_ 1783422290756632576
author Salinas-Torres, Víctor M.
Gallardo-Blanco, Hugo L.
Salinas-Torres, Rafael A.
Cerda-Flores, Ricardo M.
Lugo-Trampe, José J.
Villarreal-Martínez, Daniel Z.
Martínez de Villarreal, Laura E.
author_facet Salinas-Torres, Víctor M.
Gallardo-Blanco, Hugo L.
Salinas-Torres, Rafael A.
Cerda-Flores, Ricardo M.
Lugo-Trampe, José J.
Villarreal-Martínez, Daniel Z.
Martínez de Villarreal, Laura E.
author_sort Salinas-Torres, Víctor M.
collection PubMed
description We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified several biological networks of highly connected genes in UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, AOX1, NOTCH1, HIST1H2BB, RPS3, THBS1, ADCY9, and FGFR4. SVS–PhoRank identified a dominant model in OR10G4 (also as heterozygous de novo), ITIH3, PLEKHG4B, SLC9A3, ITGA2, AOX1, and ALPP, including a recessive model in UGT1A7, UGT1A6, PER2, PTPRD, and UGT1A3. A heterozygous compound model was observed in CDYL, KDM5A, RASGRP1, MYBPC2, PDE4DIP, F5, OBSCN, and UGT1A. These genes were implicated in pathogenetic pathways involving the following GO related categories: xenobiotic, regulation of metabolic process, regulation of cell adhesion, regulation of gene expression, inflammatory response, regulation of vascular development, keratinization, left-right symmetry, epigenetic, ubiquitination, and regulation of protein synthesis. Multiple background modifiers interacting with disease-relevant pathways may regulate gastroschisis susceptibility. Based in our findings and considering the plausibility of the biological pattern of mechanisms and gene network modeling, we suggest that the gastroschisis developmental process may be the consequence of several well-orchestrated biological and molecular mechanisms which could be interacting with gastroschisis predispositions within the first ten weeks of development.
format Online
Article
Text
id pubmed-6539040
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65390402019-06-04 Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall Salinas-Torres, Víctor M. Gallardo-Blanco, Hugo L. Salinas-Torres, Rafael A. Cerda-Flores, Ricardo M. Lugo-Trampe, José J. Villarreal-Martínez, Daniel Z. Martínez de Villarreal, Laura E. Int J Mol Sci Article We investigated whether likely pathogenic variants co-segregating with gastroschisis through a family-based approach using bioinformatic analyses were implicated in body wall closure. Gene Ontology (GO)/Panther functional enrichment and protein-protein interaction analysis by String identified several biological networks of highly connected genes in UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, AOX1, NOTCH1, HIST1H2BB, RPS3, THBS1, ADCY9, and FGFR4. SVS–PhoRank identified a dominant model in OR10G4 (also as heterozygous de novo), ITIH3, PLEKHG4B, SLC9A3, ITGA2, AOX1, and ALPP, including a recessive model in UGT1A7, UGT1A6, PER2, PTPRD, and UGT1A3. A heterozygous compound model was observed in CDYL, KDM5A, RASGRP1, MYBPC2, PDE4DIP, F5, OBSCN, and UGT1A. These genes were implicated in pathogenetic pathways involving the following GO related categories: xenobiotic, regulation of metabolic process, regulation of cell adhesion, regulation of gene expression, inflammatory response, regulation of vascular development, keratinization, left-right symmetry, epigenetic, ubiquitination, and regulation of protein synthesis. Multiple background modifiers interacting with disease-relevant pathways may regulate gastroschisis susceptibility. Based in our findings and considering the plausibility of the biological pattern of mechanisms and gene network modeling, we suggest that the gastroschisis developmental process may be the consequence of several well-orchestrated biological and molecular mechanisms which could be interacting with gastroschisis predispositions within the first ten weeks of development. MDPI 2019-05-09 /pmc/articles/PMC6539040/ /pubmed/31075877 http://dx.doi.org/10.3390/ijms20092295 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Salinas-Torres, Víctor M.
Gallardo-Blanco, Hugo L.
Salinas-Torres, Rafael A.
Cerda-Flores, Ricardo M.
Lugo-Trampe, José J.
Villarreal-Martínez, Daniel Z.
Martínez de Villarreal, Laura E.
Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
title Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
title_full Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
title_fullStr Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
title_full_unstemmed Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
title_short Bioinformatic Analysis of Gene Variants from Gastroschisis Recurrence Identifies Multiple Novel Pathogenetic Pathways: Implication for the Closure of the Ventral Body Wall
title_sort bioinformatic analysis of gene variants from gastroschisis recurrence identifies multiple novel pathogenetic pathways: implication for the closure of the ventral body wall
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539040/
https://www.ncbi.nlm.nih.gov/pubmed/31075877
http://dx.doi.org/10.3390/ijms20092295
work_keys_str_mv AT salinastorresvictorm bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall
AT gallardoblancohugol bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall
AT salinastorresrafaela bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall
AT cerdafloresricardom bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall
AT lugotrampejosej bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall
AT villarrealmartinezdanielz bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall
AT martinezdevillarreallaurae bioinformaticanalysisofgenevariantsfromgastroschisisrecurrenceidentifiesmultiplenovelpathogeneticpathwaysimplicationfortheclosureoftheventralbodywall