Cargando…
Non-Linear Quantitative Structure–Activity Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants
In this work, we developed quantitative structure–activity relationships (QSAR) models for prediction of oxygen radical absorbance capacity (ORAC) of flavonoids. Both linear (partial least squares—PLS) and non-linear models (artificial neural networks—ANNs) were built using parameters of two well-es...
Autores principales: | Žuvela, Petar, David, Jonathan, Yang, Xin, Huang, Dejian, Wong, Ming Wah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539043/ https://www.ncbi.nlm.nih.gov/pubmed/31083440 http://dx.doi.org/10.3390/ijms20092328 |
Ejemplares similares
-
Mechanistic Chromatographic Column Characterization for the Analysis of Flavonoids Using Quantitative Structure-Retention Relationships Based on Density Functional Theory
por: Buszewski, Bogusław, et al.
Publicado: (2020) -
Quantitative Structure–Retention Relationships with Non-Linear Programming for Prediction of Chromatographic Elution Order
por: Liu, J. Jay, et al.
Publicado: (2019) -
Prediction of Chromatographic Elution Order of Analytical Mixtures Based on Quantitative Structure-Retention Relationships and Multi-Objective Optimization
por: Žuvela, Petar, et al.
Publicado: (2020) -
Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes
por: Žuvela, Petar, et al.
Publicado: (2018) -
In vitro and in silico perspectives on the activation of antioxidant responsive element by citrus-derived flavonoids
por: Guan, Tianzhu, et al.
Publicado: (2023)