Cargando…
Titanium Oxide Microspheres with Tunable Size and Phase Composition
Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539129/ https://www.ncbi.nlm.nih.gov/pubmed/31067714 http://dx.doi.org/10.3390/ma12091472 |
_version_ | 1783422312872148992 |
---|---|
author | Poluboyarinov, Anton S. Chelpanov, Vitaly I. Lebedev, Vasily A. Kozlov, Daniil A. Khazova, Kristina M. Volkov, Dmitry S. Kolesnik, Irina V. Garshev, Alexey V. |
author_facet | Poluboyarinov, Anton S. Chelpanov, Vitaly I. Lebedev, Vasily A. Kozlov, Daniil A. Khazova, Kristina M. Volkov, Dmitry S. Kolesnik, Irina V. Garshev, Alexey V. |
author_sort | Poluboyarinov, Anton S. |
collection | PubMed |
description | Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(O(n)Bu)(4) hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous phase in as-prepared particles into nanocrystalline anatase and/or rutile. Transmission electron microscopy (TEM) study of the lamellae, cut out from spherical particles using focused ion beam (FIB), revealed that as-synthesized microspheres are non-hollow, homogeneous, and crystallize throughout the whole volume of the particle. The spherical particles possess photoprotective properties; the highest sun protection factor (SPF) was observed for amorphous microspheres. |
format | Online Article Text |
id | pubmed-6539129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65391292019-06-05 Titanium Oxide Microspheres with Tunable Size and Phase Composition Poluboyarinov, Anton S. Chelpanov, Vitaly I. Lebedev, Vasily A. Kozlov, Daniil A. Khazova, Kristina M. Volkov, Dmitry S. Kolesnik, Irina V. Garshev, Alexey V. Materials (Basel) Article Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(O(n)Bu)(4) hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous phase in as-prepared particles into nanocrystalline anatase and/or rutile. Transmission electron microscopy (TEM) study of the lamellae, cut out from spherical particles using focused ion beam (FIB), revealed that as-synthesized microspheres are non-hollow, homogeneous, and crystallize throughout the whole volume of the particle. The spherical particles possess photoprotective properties; the highest sun protection factor (SPF) was observed for amorphous microspheres. MDPI 2019-05-07 /pmc/articles/PMC6539129/ /pubmed/31067714 http://dx.doi.org/10.3390/ma12091472 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Poluboyarinov, Anton S. Chelpanov, Vitaly I. Lebedev, Vasily A. Kozlov, Daniil A. Khazova, Kristina M. Volkov, Dmitry S. Kolesnik, Irina V. Garshev, Alexey V. Titanium Oxide Microspheres with Tunable Size and Phase Composition |
title | Titanium Oxide Microspheres with Tunable Size and Phase Composition |
title_full | Titanium Oxide Microspheres with Tunable Size and Phase Composition |
title_fullStr | Titanium Oxide Microspheres with Tunable Size and Phase Composition |
title_full_unstemmed | Titanium Oxide Microspheres with Tunable Size and Phase Composition |
title_short | Titanium Oxide Microspheres with Tunable Size and Phase Composition |
title_sort | titanium oxide microspheres with tunable size and phase composition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539129/ https://www.ncbi.nlm.nih.gov/pubmed/31067714 http://dx.doi.org/10.3390/ma12091472 |
work_keys_str_mv | AT poluboyarinovantons titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT chelpanovvitalyi titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT lebedevvasilya titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT kozlovdaniila titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT khazovakristinam titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT volkovdmitrys titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT kolesnikirinav titaniumoxidemicrosphereswithtunablesizeandphasecomposition AT garshevalexeyv titaniumoxidemicrosphereswithtunablesizeandphasecomposition |