Cargando…
Learning Environmental Field Exploration with Computationally Constrained Underwater Robots: Gaussian Processes Meet Stochastic Optimal Control
Autonomous exploration of environmental fields is one of the most promising tasks to be performed by fleets of mobile underwater robots. The goal is to maximize the information gain during the exploration process by integrating an information-metric into the path-planning and control step. Therefore...
Autores principales: | Duecker, Daniel Andre, Geist, Andreas Rene, Kreuzer, Edwin, Solowjow, Eugen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539130/ https://www.ncbi.nlm.nih.gov/pubmed/31064096 http://dx.doi.org/10.3390/s19092094 |
Ejemplares similares
-
Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals
por: Duecker, Daniel-André, et al.
Publicado: (2017) -
Stochastic analysis for gaussian random processes and fields: with applications
por: Mandrekar, Vidyadhar S, et al.
Publicado: (2015) -
A Dynamically Reconfigurable Autonomous Underwater Robot for Karst Exploration: Design and Experiment
por: Dang, Tho, et al.
Publicado: (2022) -
Underwater robots
por: Antonelli, Gianluca
Publicado: (2014) -
Constraining graviton non-Gaussianity through the CMB bispectra
por: De Luca, Valerio, et al.
Publicado: (2019)