Cargando…
Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells
The typical structure of high efficiency Cu(InGa)Se(2) (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was op...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539136/ https://www.ncbi.nlm.nih.gov/pubmed/31035494 http://dx.doi.org/10.3390/ma12091365 |
_version_ | 1783422314549870592 |
---|---|
author | Alhammadi, Salh Park, Hyeonwook Kim, Woo Kyoung |
author_facet | Alhammadi, Salh Park, Hyeonwook Kim, Woo Kyoung |
author_sort | Alhammadi, Salh |
collection | PubMed |
description | The typical structure of high efficiency Cu(InGa)Se(2) (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by considering the surface roughness of CIGS light absorbers. The i-ZnO layers with different thicknesses from 30 to 170 nm were deposited via sputtering. The optical properties, microstructures, and morphologies of the i-ZnO thin films with different thicknesses were characterized, and their effects on the CIGS solar cell device properties were explored. Two types of CIGS absorbers prepared by three-stage co-evaporation and two-step sulfurization after the selenization (SAS) processes showed a difference in the preferred crystal orientation, morphology, and surface roughness. During the subsequent post-processing for the fabrication of the glass/Mo/CIGS/CdS/i-ZnO/AZO device, the change in the i-ZnO thickness influenced the performance of the CIGS devices. For the three-stage co-evaporated CIGS cell, the increase in the thickness of the i-ZnO layer from 30 to 90 nm improved the shunt resistance (R(SH)), open circuit voltage, and fill factor (FF), as well as the conversion efficiency (10.1% to 11.8%). A further increas of the i-ZnO thickness to 170 nm, deteriorated the device performance parameters, which suggests that 90 nm is close to the optimum thickness of i-ZnO. Conversely, the device with a two-step SAS processed CIGS absorber showed smaller values of the overall R(SH) (130–371 Ω cm(2)) than that of the device with a three-stage co-evaporated CIGS absorber (530–1127 Ω cm(2)) ranging from 30 nm to 170 nm of i-ZnO thickness. Therefore, the value of the shunt resistance was monotonically increased with the i-ZnO thickness ranging from 30 to 170 nm, which improved the FF and conversion efficiency (6.96% to 8.87%). |
format | Online Article Text |
id | pubmed-6539136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65391362019-06-05 Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells Alhammadi, Salh Park, Hyeonwook Kim, Woo Kyoung Materials (Basel) Article The typical structure of high efficiency Cu(InGa)Se(2) (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by considering the surface roughness of CIGS light absorbers. The i-ZnO layers with different thicknesses from 30 to 170 nm were deposited via sputtering. The optical properties, microstructures, and morphologies of the i-ZnO thin films with different thicknesses were characterized, and their effects on the CIGS solar cell device properties were explored. Two types of CIGS absorbers prepared by three-stage co-evaporation and two-step sulfurization after the selenization (SAS) processes showed a difference in the preferred crystal orientation, morphology, and surface roughness. During the subsequent post-processing for the fabrication of the glass/Mo/CIGS/CdS/i-ZnO/AZO device, the change in the i-ZnO thickness influenced the performance of the CIGS devices. For the three-stage co-evaporated CIGS cell, the increase in the thickness of the i-ZnO layer from 30 to 90 nm improved the shunt resistance (R(SH)), open circuit voltage, and fill factor (FF), as well as the conversion efficiency (10.1% to 11.8%). A further increas of the i-ZnO thickness to 170 nm, deteriorated the device performance parameters, which suggests that 90 nm is close to the optimum thickness of i-ZnO. Conversely, the device with a two-step SAS processed CIGS absorber showed smaller values of the overall R(SH) (130–371 Ω cm(2)) than that of the device with a three-stage co-evaporated CIGS absorber (530–1127 Ω cm(2)) ranging from 30 nm to 170 nm of i-ZnO thickness. Therefore, the value of the shunt resistance was monotonically increased with the i-ZnO thickness ranging from 30 to 170 nm, which improved the FF and conversion efficiency (6.96% to 8.87%). MDPI 2019-04-26 /pmc/articles/PMC6539136/ /pubmed/31035494 http://dx.doi.org/10.3390/ma12091365 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alhammadi, Salh Park, Hyeonwook Kim, Woo Kyoung Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells |
title | Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells |
title_full | Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells |
title_fullStr | Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells |
title_full_unstemmed | Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells |
title_short | Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se(2)-Based Thin Film Solar Cells |
title_sort | optimization of intrinsic zno thickness in cu(in,ga)se(2)-based thin film solar cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539136/ https://www.ncbi.nlm.nih.gov/pubmed/31035494 http://dx.doi.org/10.3390/ma12091365 |
work_keys_str_mv | AT alhammadisalh optimizationofintrinsicznothicknessincuingase2basedthinfilmsolarcells AT parkhyeonwook optimizationofintrinsicznothicknessincuingase2basedthinfilmsolarcells AT kimwookyoung optimizationofintrinsicznothicknessincuingase2basedthinfilmsolarcells |