Cargando…

Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)

Field pea cultivars are constantly improved through breeding programs to enhance biotic and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression. It is also th...

Descripción completa

Detalles Bibliográficos
Autores principales: Quirós Vargas, Juan José, Zhang, Chongyuan, Smitchger, Jamin A., McGee, Rebecca J., Sankaran, Sindhuja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539180/
https://www.ncbi.nlm.nih.gov/pubmed/31052251
http://dx.doi.org/10.3390/s19092031
_version_ 1783422325124759552
author Quirós Vargas, Juan José
Zhang, Chongyuan
Smitchger, Jamin A.
McGee, Rebecca J.
Sankaran, Sindhuja
author_facet Quirós Vargas, Juan José
Zhang, Chongyuan
Smitchger, Jamin A.
McGee, Rebecca J.
Sankaran, Sindhuja
author_sort Quirós Vargas, Juan José
collection PubMed
description Field pea cultivars are constantly improved through breeding programs to enhance biotic and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression. It is also the primary yield component for peas used as a cover crop and/or grazing. Measuring AGBM is destructive and labor-intensive process. Sensor-based phenotyping of such traits can greatly enhance crop breeding efficiency. In this research, high resolution RGB and multispectral images acquired with unmanned aerial systems were used to assess phenotypes in spring and winter pea breeding plots. The Green Red Vegetation Index (GRVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE), plot volume, canopy height, and canopy coverage were extracted from RGB and multispectral information at five imaging times (between 365 to 1948 accumulated degree days/ADD after 1 May) in four winter field pea experiments and at three imaging times (between 1231 to 1648 ADD) in one spring field pea experiment. The image features were compared to ground-truth data including AGBM, lodging, leaf type, days to 50% flowering, days to physiological maturity, number of the first reproductive node, and seed yield. In two of the winter pea experiments, a strong correlation between image features and seed yield was observed at 1268 ADD (flowering). An increase in correlation between image features with the phenological traits such as days to 50% flowering and days to physiological maturity was observed at about 1725 ADD in these winter pea experiments. In the spring pea experiment, the plot volume estimated from images was highly correlated with ground truth canopy height (r = 0.83) at 1231 ADD. In two other winter pea experiments and the spring pea experiment, the GRVI and NDVI features were significantly correlated with AGBM at flowering. When selected image features were used to develop a least absolute shrinkage and selection operator model for AGBM estimation, the correlation coefficient between the actual and predicted AGBM was 0.60 and 0.84 in the winter and spring pea experiments, respectively. A SPOT-6 satellite image (1.5 m resolution) was also evaluated for its applicability to assess biomass and seed yield. The image features extracted from satellite imagery showed significant correlation with seed yield in two winter field pea experiments, however, the trend was not consistent. In summary, the study supports the potential of using unmanned aerial system-based imaging techniques to estimate biomass and crop performance in pea breeding programs.
format Online
Article
Text
id pubmed-6539180
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65391802019-06-04 Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.) Quirós Vargas, Juan José Zhang, Chongyuan Smitchger, Jamin A. McGee, Rebecca J. Sankaran, Sindhuja Sensors (Basel) Article Field pea cultivars are constantly improved through breeding programs to enhance biotic and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression. It is also the primary yield component for peas used as a cover crop and/or grazing. Measuring AGBM is destructive and labor-intensive process. Sensor-based phenotyping of such traits can greatly enhance crop breeding efficiency. In this research, high resolution RGB and multispectral images acquired with unmanned aerial systems were used to assess phenotypes in spring and winter pea breeding plots. The Green Red Vegetation Index (GRVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE), plot volume, canopy height, and canopy coverage were extracted from RGB and multispectral information at five imaging times (between 365 to 1948 accumulated degree days/ADD after 1 May) in four winter field pea experiments and at three imaging times (between 1231 to 1648 ADD) in one spring field pea experiment. The image features were compared to ground-truth data including AGBM, lodging, leaf type, days to 50% flowering, days to physiological maturity, number of the first reproductive node, and seed yield. In two of the winter pea experiments, a strong correlation between image features and seed yield was observed at 1268 ADD (flowering). An increase in correlation between image features with the phenological traits such as days to 50% flowering and days to physiological maturity was observed at about 1725 ADD in these winter pea experiments. In the spring pea experiment, the plot volume estimated from images was highly correlated with ground truth canopy height (r = 0.83) at 1231 ADD. In two other winter pea experiments and the spring pea experiment, the GRVI and NDVI features were significantly correlated with AGBM at flowering. When selected image features were used to develop a least absolute shrinkage and selection operator model for AGBM estimation, the correlation coefficient between the actual and predicted AGBM was 0.60 and 0.84 in the winter and spring pea experiments, respectively. A SPOT-6 satellite image (1.5 m resolution) was also evaluated for its applicability to assess biomass and seed yield. The image features extracted from satellite imagery showed significant correlation with seed yield in two winter field pea experiments, however, the trend was not consistent. In summary, the study supports the potential of using unmanned aerial system-based imaging techniques to estimate biomass and crop performance in pea breeding programs. MDPI 2019-04-30 /pmc/articles/PMC6539180/ /pubmed/31052251 http://dx.doi.org/10.3390/s19092031 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Quirós Vargas, Juan José
Zhang, Chongyuan
Smitchger, Jamin A.
McGee, Rebecca J.
Sankaran, Sindhuja
Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)
title Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)
title_full Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)
title_fullStr Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)
title_full_unstemmed Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)
title_short Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.)
title_sort phenotyping of plant biomass and performance traits using remote sensing techniques in pea (pisum sativum, l.)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539180/
https://www.ncbi.nlm.nih.gov/pubmed/31052251
http://dx.doi.org/10.3390/s19092031
work_keys_str_mv AT quirosvargasjuanjose phenotypingofplantbiomassandperformancetraitsusingremotesensingtechniquesinpeapisumsativuml
AT zhangchongyuan phenotypingofplantbiomassandperformancetraitsusingremotesensingtechniquesinpeapisumsativuml
AT smitchgerjamina phenotypingofplantbiomassandperformancetraitsusingremotesensingtechniquesinpeapisumsativuml
AT mcgeerebeccaj phenotypingofplantbiomassandperformancetraitsusingremotesensingtechniquesinpeapisumsativuml
AT sankaransindhuja phenotypingofplantbiomassandperformancetraitsusingremotesensingtechniquesinpeapisumsativuml