Cargando…
Research on GA-SVM Based Head-Motion Classification via Mechanomyography Feature Analysis
This study investigated classification of six types of head motions using mechanomyography (MMG) signals. An unequal segmenting algorithm was adopted to segment the MMG signals generated by head motions. Three types of features (time domain, time-frequency domain and nonlinear dynamics) were extract...
Autores principales: | Zhang, Yue, Yu, Jing, Xia, Chunming, Yang, Ke, Cao, Heng, Wu, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539181/ https://www.ncbi.nlm.nih.gov/pubmed/31035370 http://dx.doi.org/10.3390/s19091986 |
Ejemplares similares
-
Mechanomyography Signal Pattern Recognition of Knee and Ankle Movements Using Swarm Intelligence Algorithm-Based Feature Selection Methods
por: Zhang, Yue, et al.
Publicado: (2023) -
Mechanomyography versus Electromyography, in monitoring the muscular fatigue
por: Tarata, Mihai T
Publicado: (2003) -
PCG Classification Using Multidomain Features and SVM Classifier
por: Tang, Hong, et al.
Publicado: (2018) -
A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography
por: Esposito, Daniele, et al.
Publicado: (2018) -
Estimation of Knee Extension Force Using Mechanomyography Signals Based on GRA and ICS-SVR
por: Li, Zebin, et al.
Publicado: (2022)