Cargando…
Real-Time Multi-Scale Face Detector on Embedded Devices
Face detection is the basic step in video face analysis and has been studied for many years. However, achieving real-time performance on computation-resource-limited embedded devices still remains an open challenge. To address this problem, in this paper we propose a face detector, EagleEye, which s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539187/ https://www.ncbi.nlm.nih.gov/pubmed/31075955 http://dx.doi.org/10.3390/s19092158 |
Sumario: | Face detection is the basic step in video face analysis and has been studied for many years. However, achieving real-time performance on computation-resource-limited embedded devices still remains an open challenge. To address this problem, in this paper we propose a face detector, EagleEye, which shows a good trade-off between high accuracy and fast speed on the popular embedded device with low computation power (e.g., the Raspberry Pi 3b+). The EagleEye is designed to have low floating-point operations per second (FLOPS) as well as enough capacity, and its accuracy is further improved without adding too much FLOPS. Specifically, we design five strategies for building efficient face detectors with a good balance of accuracy and running speed. The first two strategies help to build a detector with low computation complexity and enough capacity. We use convolution factorization to change traditional convolutions into more sparse depth-wise convolutions to save computation costs and we use successive downsampling convolutions at the beginning of the face detection network. The latter three strategies significantly improve the accuracy of the light-weight detector without adding too much computation costs. We design an efficient context module to utilize context information to benefit the face detection. We also adopt information preserving activation function to increase the network capacity. Finally, we use focal loss to further improve the accuracy by handling the class imbalance problem better. Experiments show that the EagleEye outperforms the other face detectors with the same order of computation costs, on both runtime efficiency and accuracy. |
---|