Cargando…
Study of the Interfacial Interaction Performance of Branched Bonding Agents and CL-20
Adding bonding agents to the formulation is an effective way to solve the dewetting of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) in the binder matrix. For the design and selection of the structure of a bonding agent suitable for CL-20, a series of branched polyether bonding...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539246/ https://www.ncbi.nlm.nih.gov/pubmed/31052144 http://dx.doi.org/10.3390/ma12091402 |
Sumario: | Adding bonding agents to the formulation is an effective way to solve the dewetting of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) in the binder matrix. For the design and selection of the structure of a bonding agent suitable for CL-20, a series of branched polyether bonding agents with terminal groups substituted by cyano, ester and hydroxyl functional groups were employed. Contact angle, Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements were performed, and the results were compared with that of common bonding agent, the boron trifluoride triethanolamine complex (TEA·BF(3)). The results revealed that the nitramine reinforcement of the three polar groups to CL-20 was in the order cyano group > hydroxyl group > ester group. It is proposed that CBPE-10,10 (cyano-terminated branched polyether bonding agent) had the strongest interfacial interaction with CL-20. The adhesion work value was 105.37 mN⋅m(−1) and the adhesion degree was 41.04%. The bonding properties of CBPEs/CL-20 were better than those of TEA·BF(3)/CL-20. |
---|