Cargando…
High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces
This work addresses the fabrication of hydrophobic surface structures by means of direct laser interference patterning using an optical setup optimized for high throughput processing. The developed optical assembly is used to shape the laser beam intensity as well as to obtain the two sub beams requ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539286/ https://www.ncbi.nlm.nih.gov/pubmed/31067815 http://dx.doi.org/10.3390/ma12091484 |
_version_ | 1783422350837940224 |
---|---|
author | Lang, Valentin Voisiat, Bogdan Lasagni, Andrés Fabián |
author_facet | Lang, Valentin Voisiat, Bogdan Lasagni, Andrés Fabián |
author_sort | Lang, Valentin |
collection | PubMed |
description | This work addresses the fabrication of hydrophobic surface structures by means of direct laser interference patterning using an optical setup optimized for high throughput processing. The developed optical assembly is used to shape the laser beam intensity as well as to obtain the two sub beams required for creating the interference pattern. The resulting beam profile consists of an elongated rectangular laser spot with 5.0 mm × 0.1 mm size, which enables the optimized utilization of the laser fluence available from an ns-pulsed laser with a wavelength of 1064 nm. Depending on the pulse repetition rate applied, heating of the substrate volume generated by heat accumulation encouraged exceptionally high aspect ratios of the trench structures due to melt flow dynamic material deformation. Finally, water contact angle measurements of the produced structures permitted the demonstration of the capability of controlling the wetting angle, in which this effect does not only depend on the height of the generated surface structures but also on their morphology. |
format | Online Article Text |
id | pubmed-6539286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65392862019-06-05 High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces Lang, Valentin Voisiat, Bogdan Lasagni, Andrés Fabián Materials (Basel) Article This work addresses the fabrication of hydrophobic surface structures by means of direct laser interference patterning using an optical setup optimized for high throughput processing. The developed optical assembly is used to shape the laser beam intensity as well as to obtain the two sub beams required for creating the interference pattern. The resulting beam profile consists of an elongated rectangular laser spot with 5.0 mm × 0.1 mm size, which enables the optimized utilization of the laser fluence available from an ns-pulsed laser with a wavelength of 1064 nm. Depending on the pulse repetition rate applied, heating of the substrate volume generated by heat accumulation encouraged exceptionally high aspect ratios of the trench structures due to melt flow dynamic material deformation. Finally, water contact angle measurements of the produced structures permitted the demonstration of the capability of controlling the wetting angle, in which this effect does not only depend on the height of the generated surface structures but also on their morphology. MDPI 2019-05-07 /pmc/articles/PMC6539286/ /pubmed/31067815 http://dx.doi.org/10.3390/ma12091484 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lang, Valentin Voisiat, Bogdan Lasagni, Andrés Fabián High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces |
title | High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces |
title_full | High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces |
title_fullStr | High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces |
title_full_unstemmed | High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces |
title_short | High Throughput Direct Laser Interference Patterning of Aluminum for Fabrication of Super Hydrophobic Surfaces |
title_sort | high throughput direct laser interference patterning of aluminum for fabrication of super hydrophobic surfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539286/ https://www.ncbi.nlm.nih.gov/pubmed/31067815 http://dx.doi.org/10.3390/ma12091484 |
work_keys_str_mv | AT langvalentin highthroughputdirectlaserinterferencepatterningofaluminumforfabricationofsuperhydrophobicsurfaces AT voisiatbogdan highthroughputdirectlaserinterferencepatterningofaluminumforfabricationofsuperhydrophobicsurfaces AT lasagniandresfabian highthroughputdirectlaserinterferencepatterningofaluminumforfabricationofsuperhydrophobicsurfaces |