Cargando…
Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea
Although data-driven methods including deep neural network (DNN) were introduced, there was not enough assessment about spatial characteristics when using limited ground observation as reference. This work aimed to interpret the feasibility of several machine learning approaches to assess the spatia...
Autores principales: | Yeom, Jong-Min, Park, Seonyoung, Chae, Taebyeong, Kim, Jin-Young, Lee, Chang Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539294/ https://www.ncbi.nlm.nih.gov/pubmed/31060305 http://dx.doi.org/10.3390/s19092082 |
Ejemplares similares
-
Theory of geostationary satellites
por: Zee, Chong-Hung
Publicado: (1989) -
Geostationary satellites collocation
por: Li, Hengnian
Publicado: (2014) -
Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model
por: Yeom, Jong-min, et al.
Publicado: (2018) -
Pioneering evaluation of GaN transistors in geostationary satellites
por: Mostardinha, Hugo, et al.
Publicado: (2022) -
Very Short-Term Surface Solar Irradiance Forecasting Based on FengYun-4 Geostationary Satellite
por: Yang, Liwei, et al.
Publicado: (2020)