Cargando…
Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
Rolling bearings are the core components of rotating machinery. Their health directly affects the performance, stability and life of rotating machinery. To prevent possible damage, it is necessary to detect the condition of rolling bearings for fault diagnosis. With the rapid development of intellig...
Autores principales: | Li, Hongmei, Huang, Jinying, Ji, Shuwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539351/ https://www.ncbi.nlm.nih.gov/pubmed/31052295 http://dx.doi.org/10.3390/s19092034 |
Ejemplares similares
-
An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis
por: Li, Shaobo, et al.
Publicado: (2017) -
Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Xu, Gaowei, et al.
Publicado: (2019) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021) -
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
por: Liu, Yang, et al.
Publicado: (2019) -
Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network
por: Liu, Xian, et al.
Publicado: (2022)