Cargando…
Direction of Arrival Estimation Using Two Hydrophones: Frequency Diversity Technique for Passive Sonar
The traditional passive azimuth estimation algorithm using two hydrophones, such as cross-correlation time-delay estimation and cross-spectral phase estimation, requires a high signal-to-noise ratio (SNR) to ensure the clarity of the estimated target trajectory. This paper proposes an algorithm to a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539417/ https://www.ncbi.nlm.nih.gov/pubmed/31035640 http://dx.doi.org/10.3390/s19092001 |
Sumario: | The traditional passive azimuth estimation algorithm using two hydrophones, such as cross-correlation time-delay estimation and cross-spectral phase estimation, requires a high signal-to-noise ratio (SNR) to ensure the clarity of the estimated target trajectory. This paper proposes an algorithm to apply the frequency diversity technique to passive azimuth estimation. The algorithm also uses two hydrophones but can obtain clear trajectories at a lower SNR. Firstly, the initial phase of the signal at different frequencies is removed by calculating the cross-spectral density matrix. Then, phase information between frequencies is used for beamforming. In this way, the frequency dimension information is used to improve the signal processing gain. This paper theoretically analyzes the resolution and processing gain of the algorithm. The simulation results show that the proposed algorithm can estimate the target azimuth robustly under the conditions of a single target (SNR = −16 dB) and multiple targets (SNR = −10 dB), while the cross-correlation algorithm cannot. Finally, the algorithm is tested by the swell96 data and the South Sea experimental data. When dealing with rich frequency signals, the performance of the algorithm using two hydrophones is even better than that of the conventional broadband beamforming of the 64-element array. This further validates the effectiveness and advantages of the algorithm. |
---|