Cargando…
Predicting the Toxicity of Ionic Liquids toward Acetylcholinesterase Enzymes Using Novel QSAR Models
Limited information on the potential toxicity of ionic liquids (ILs) becomes the bottleneck that creates a barrier in their large-scale application. In this work, two quantitative structure-activity relationships (QSAR) models were used to evaluate the toxicity of ILs toward the acetylcholinesterase...
Autores principales: | Zhu, Peng, Kang, Xuejing, Zhao, Yongsheng, Latif, Ullah, Zhang, Hongzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539465/ https://www.ncbi.nlm.nih.gov/pubmed/31052561 http://dx.doi.org/10.3390/ijms20092186 |
Ejemplares similares
-
QSAR analysis on tacrine-related acetylcholinesterase inhibitors
por: Wong, Kai Y, et al.
Publicado: (2014) -
Representation of the Structure—A Key Point of Building QSAR/QSPR Models for Ionic Liquids
por: Rybińska-Fryca, Anna, et al.
Publicado: (2020) -
Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking
por: Simeon, Saw, et al.
Publicado: (2016) -
Predictive QSAR Models for the Toxicity of Disinfection Byproducts
por: Qin, Litang, et al.
Publicado: (2017) -
Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity
por: Chipofya, Mapopa, et al.
Publicado: (2022)