Cargando…

Power Factor Compensation Using Teaching Learning Based Optimization and Monitoring System by Cloud Data Logger

The main objective of this paper is to compensate power factor using teaching learning based optimization (TLBO), determine the capacitor bank optimization (CBO) algorithm, and monitor a system in real-time using cloud data logging (CDL). Implemented Power Factor Compensation and Monitoring System (...

Descripción completa

Detalles Bibliográficos
Autores principales: Cano Ortega, Antonio, Sánchez Sutil, Francisco Jose, De la Casa Hernández, Jesús
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539470/
https://www.ncbi.nlm.nih.gov/pubmed/31083377
http://dx.doi.org/10.3390/s19092172
Descripción
Sumario:The main objective of this paper is to compensate power factor using teaching learning based optimization (TLBO), determine the capacitor bank optimization (CBO) algorithm, and monitor a system in real-time using cloud data logging (CDL). Implemented Power Factor Compensation and Monitoring System (PFCMS) calculates the optimal capacitor combination to improve power factor of the installation by measure of voltage, current, and active power. CBO algorithm determines the best solution of capacitor values to install, by applying TLBO in different phases of the algorithm. Electrical variables acquired by the sensors and the variables calculated are stored in CDL using Google Sheets (GS) to monitor and analyse the installation by means of a TLBO algorithm implemented in PFCMS, that optimizes the compensation power factor of installation and determining which capacitors are connected in real time. Moreover, the optimization of the power factor in facilities means economic and energy savings, as well as the improvement of the quality of the operation of the installation.