Cargando…

Numerical Simulation of Stainless Steel-Carbon Steel Laminated Plate Considering Interface in Pulsed Laser Bending

According to ANSYS software and an electron probe experiment, a multi-layer finite element model (FEM) of pulsed laser bending of stainless steel-carbon steel laminated plate (SCLP) including interfaces has been established. Compared with a single-layer stainless steel plate (SLSP), based on a tempe...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zihui, Wang, Xuyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539578/
https://www.ncbi.nlm.nih.gov/pubmed/31052219
http://dx.doi.org/10.3390/ma12091410
Descripción
Sumario:According to ANSYS software and an electron probe experiment, a multi-layer finite element model (FEM) of pulsed laser bending of stainless steel-carbon steel laminated plate (SCLP) including interfaces has been established. Compared with a single-layer stainless steel plate (SLSP), based on a temperature gradient mechanism considering the depth of the plastic zone, the influence of the interfaces and carbon steel layer in the model of the SCLP on the bending angle has been studied by analyzing the distributions of the temperature field, stress field and strain field in the thickness direction. The simulation results show that the temperature of the SCLP in the thickness direction is lower than that of the SLSP due to interfacial thermal resistance of the interface and fast heat conduction of the carbon steel layer, resulting in a smaller depth of the plastic zone of the SCLP defined by the recrystallization temperature. Affected by the temperature distribution, the plastic stress and strain of the SCLP in the plastic zone are smaller than those of the SLSP, leading to a smaller bending angle of the SCLP. When the laser power is 140 W, the scanning speed is 400 mm/min, the defocus distance is 10 mm, and the scanning time is 1, the bending angle of the SCLP is 1.336°, which is smaller than the bending angle 1.760° of the SLSP. The experimental verifications show that the maximum error of the bending angle is 3.74%, which verifies that the model of laser bending is usable and contributes to refining the laser bending mechanism of the SCLP.