Cargando…

Low-Cost Image Compressive Sensing with Multiple Measurement Rates for Object Detection

When measurement rates grow, most Compressive Sensing (CS) methods suffer from an increase in overheads of transmission and storage of CS measurements, while reconstruction quality degrades appreciably when measurement rates reduce. To solve these problems in real scenarios such as large-scale distr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Longlong, Li, Kenli, Yang, Canqun, Liu, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539613/
https://www.ncbi.nlm.nih.gov/pubmed/31060279
http://dx.doi.org/10.3390/s19092079
Descripción
Sumario:When measurement rates grow, most Compressive Sensing (CS) methods suffer from an increase in overheads of transmission and storage of CS measurements, while reconstruction quality degrades appreciably when measurement rates reduce. To solve these problems in real scenarios such as large-scale distributed surveillance systems, we propose a low-cost image CS approach called MRCS for object detection. It predicts key objects using the proposed MYOLO3 detector, and then samples the regions of the key objects as well as other regions using multiple measurement rates to reduce the size of sampled CS measurements. It also stores and transmits half-precision CS measurements to further reduce the required transmission bandwidth and storage space. Comprehensive evaluations demonstrate that MYOLO3 is a smaller and improved object detector for resource-limited hardware devices such as surveillance cameras and aerial drones. They also suggest that MRCS significantly reduces the required transmission bandwidth and storage space by declining the size of CS measurements, e.g., mean Compression Ratios (mCR) achieves 1.43–22.92 on the VOC-pbc dataset. Notably, MRCS further reduces the size of CS measurements by half-precision representations. Subsequently, the required transmission bandwidth and storage space are reduced by one half as compared to the counterparts represented with single-precision floats. Moreover, it also substantially enhances the usability of object detection on reconstructed images with half-precision CS measurements and multiple measurement rates as compared to its counterpart, using a single low measurement rate.