Cargando…
Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold a huge promise for regenerative medicine, drug development, and disease modeling. PSCs have unique metabolic features that are akin to those of cancer cells, in which glycolysis pred...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539623/ https://www.ncbi.nlm.nih.gov/pubmed/31067778 http://dx.doi.org/10.3390/ijms20092254 |
_version_ | 1783422433887256576 |
---|---|
author | Nishimura, Ken Fukuda, Aya Hisatake, Koji |
author_facet | Nishimura, Ken Fukuda, Aya Hisatake, Koji |
author_sort | Nishimura, Ken |
collection | PubMed |
description | Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold a huge promise for regenerative medicine, drug development, and disease modeling. PSCs have unique metabolic features that are akin to those of cancer cells, in which glycolysis predominates to produce energy as well as building blocks for cellular components. Recent studies indicate that the unique metabolism in PSCs is not a mere consequence of their preference for a low oxygen environment, but is an active process for maintaining self-renewal and pluripotency, possibly in preparation for rapid response to the metabolic demands of differentiation. Understanding the regulatory mechanisms of this unique metabolism in PSCs is essential for proper derivation, generation, and maintenance of PSCs. In this review, we discuss the metabolic features of PSCs and describe the current understanding of the mechanisms of the metabolic shift during reprogramming from somatic cells to iPSCs, in which the metabolism switches from oxidative phosphorylation (OxPhos) to glycolysis. |
format | Online Article Text |
id | pubmed-6539623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65396232019-06-04 Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming Nishimura, Ken Fukuda, Aya Hisatake, Koji Int J Mol Sci Review Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold a huge promise for regenerative medicine, drug development, and disease modeling. PSCs have unique metabolic features that are akin to those of cancer cells, in which glycolysis predominates to produce energy as well as building blocks for cellular components. Recent studies indicate that the unique metabolism in PSCs is not a mere consequence of their preference for a low oxygen environment, but is an active process for maintaining self-renewal and pluripotency, possibly in preparation for rapid response to the metabolic demands of differentiation. Understanding the regulatory mechanisms of this unique metabolism in PSCs is essential for proper derivation, generation, and maintenance of PSCs. In this review, we discuss the metabolic features of PSCs and describe the current understanding of the mechanisms of the metabolic shift during reprogramming from somatic cells to iPSCs, in which the metabolism switches from oxidative phosphorylation (OxPhos) to glycolysis. MDPI 2019-05-07 /pmc/articles/PMC6539623/ /pubmed/31067778 http://dx.doi.org/10.3390/ijms20092254 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Nishimura, Ken Fukuda, Aya Hisatake, Koji Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming |
title | Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming |
title_full | Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming |
title_fullStr | Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming |
title_full_unstemmed | Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming |
title_short | Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming |
title_sort | mechanisms of the metabolic shift during somatic cell reprogramming |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539623/ https://www.ncbi.nlm.nih.gov/pubmed/31067778 http://dx.doi.org/10.3390/ijms20092254 |
work_keys_str_mv | AT nishimuraken mechanismsofthemetabolicshiftduringsomaticcellreprogramming AT fukudaaya mechanismsofthemetabolicshiftduringsomaticcellreprogramming AT hisatakekoji mechanismsofthemetabolicshiftduringsomaticcellreprogramming |