Cargando…
Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes
In a smart home linked to a smart grid (SG), demand-side management (DSM) has the potential to reduce electricity costs and carbon/chlorofluorocarbon emissions, which are associated with electricity used in today’s modern society. To meet continuously increasing electrical energy demands requested f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539684/ https://www.ncbi.nlm.nih.gov/pubmed/31052502 http://dx.doi.org/10.3390/s19092047 |
_version_ | 1783422448725655552 |
---|---|
author | Chen, Yung-Yao Lin, Yu-Hsiu Kung, Chia-Ching Chung, Ming-Han Yen, I-Hsuan |
author_facet | Chen, Yung-Yao Lin, Yu-Hsiu Kung, Chia-Ching Chung, Ming-Han Yen, I-Hsuan |
author_sort | Chen, Yung-Yao |
collection | PubMed |
description | In a smart home linked to a smart grid (SG), demand-side management (DSM) has the potential to reduce electricity costs and carbon/chlorofluorocarbon emissions, which are associated with electricity used in today’s modern society. To meet continuously increasing electrical energy demands requested from downstream sectors in an SG, energy management systems (EMS), developed with paradigms of artificial intelligence (AI) across Internet of things (IoT) and conducted in fields of interest, monitor, manage, and analyze industrial, commercial, and residential electrical appliances efficiently in response to demand response (DR) signals as DSM. Usually, a DSM service provided by utilities for consumers in an SG is based on cloud-centered data science analytics. However, such cloud-centered data science analytics service involved for DSM is mostly far away from on-site IoT end devices, such as DR switches/power meters/smart meters, which is usually unacceptable for latency-sensitive user-centric IoT applications in DSM. This implies that, for instance, IoT end devices deployed on-site for latency-sensitive user-centric IoT applications in DSM should be aware of immediately analytical, interpretable, and real-time actionable data insights processed on and identified by IoT end devices at IoT sources. Therefore, this work designs and implements a smart edge analytics-empowered power meter prototype considering advanced AI in DSM for smart homes. The prototype in this work works in a cloud analytics-assisted electrical EMS architecture, which is designed and implemented as edge analytics in the architecture described and developed toward a next-generation smart sensing infrastructure for smart homes. Two different types of AI deployed on-site on the prototype are conducted for DSM and compared in this work. The experimentation reported in this work shows the architecture described with the prototype in this work is feasible and workable. |
format | Online Article Text |
id | pubmed-6539684 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65396842019-06-04 Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes Chen, Yung-Yao Lin, Yu-Hsiu Kung, Chia-Ching Chung, Ming-Han Yen, I-Hsuan Sensors (Basel) Article In a smart home linked to a smart grid (SG), demand-side management (DSM) has the potential to reduce electricity costs and carbon/chlorofluorocarbon emissions, which are associated with electricity used in today’s modern society. To meet continuously increasing electrical energy demands requested from downstream sectors in an SG, energy management systems (EMS), developed with paradigms of artificial intelligence (AI) across Internet of things (IoT) and conducted in fields of interest, monitor, manage, and analyze industrial, commercial, and residential electrical appliances efficiently in response to demand response (DR) signals as DSM. Usually, a DSM service provided by utilities for consumers in an SG is based on cloud-centered data science analytics. However, such cloud-centered data science analytics service involved for DSM is mostly far away from on-site IoT end devices, such as DR switches/power meters/smart meters, which is usually unacceptable for latency-sensitive user-centric IoT applications in DSM. This implies that, for instance, IoT end devices deployed on-site for latency-sensitive user-centric IoT applications in DSM should be aware of immediately analytical, interpretable, and real-time actionable data insights processed on and identified by IoT end devices at IoT sources. Therefore, this work designs and implements a smart edge analytics-empowered power meter prototype considering advanced AI in DSM for smart homes. The prototype in this work works in a cloud analytics-assisted electrical EMS architecture, which is designed and implemented as edge analytics in the architecture described and developed toward a next-generation smart sensing infrastructure for smart homes. Two different types of AI deployed on-site on the prototype are conducted for DSM and compared in this work. The experimentation reported in this work shows the architecture described with the prototype in this work is feasible and workable. MDPI 2019-05-02 /pmc/articles/PMC6539684/ /pubmed/31052502 http://dx.doi.org/10.3390/s19092047 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Yung-Yao Lin, Yu-Hsiu Kung, Chia-Ching Chung, Ming-Han Yen, I-Hsuan Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes |
title | Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes |
title_full | Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes |
title_fullStr | Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes |
title_full_unstemmed | Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes |
title_short | Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes |
title_sort | design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539684/ https://www.ncbi.nlm.nih.gov/pubmed/31052502 http://dx.doi.org/10.3390/s19092047 |
work_keys_str_mv | AT chenyungyao designandimplementationofcloudanalyticsassistedsmartpowermetersconsideringadvancedartificialintelligenceasedgeanalyticsindemandsidemanagementforsmarthomes AT linyuhsiu designandimplementationofcloudanalyticsassistedsmartpowermetersconsideringadvancedartificialintelligenceasedgeanalyticsindemandsidemanagementforsmarthomes AT kungchiaching designandimplementationofcloudanalyticsassistedsmartpowermetersconsideringadvancedartificialintelligenceasedgeanalyticsindemandsidemanagementforsmarthomes AT chungminghan designandimplementationofcloudanalyticsassistedsmartpowermetersconsideringadvancedartificialintelligenceasedgeanalyticsindemandsidemanagementforsmarthomes AT yenihsuan designandimplementationofcloudanalyticsassistedsmartpowermetersconsideringadvancedartificialintelligenceasedgeanalyticsindemandsidemanagementforsmarthomes |