Cargando…
Structure-Based Approach for the Prediction of Mu-opioid Binding Affinity of Unclassified Designer Fentanyl-Like Molecules
Three quantitative structure-activity relationship (QSAR) models for predicting the affinity of mu-opioid receptor (μOR) ligands have been developed. The resulted models, exploiting the accessibility of the QSAR modeling, generate a useful tool for the investigation and identification of unclassifie...
Autores principales: | Floresta, Giuseppe, Rescifina, Antonio, Abbate, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539757/ https://www.ncbi.nlm.nih.gov/pubmed/31083294 http://dx.doi.org/10.3390/ijms20092311 |
Ejemplares similares
-
Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis †
por: Floresta, Giuseppe, et al.
Publicado: (2018) -
Predicting opioid receptor binding affinity of pharmacologically unclassified designer substances using molecular docking
por: Ellis, Christopher R., et al.
Publicado: (2018) -
Fentanyl Family at the Mu-Opioid Receptor: Uniform Assessment of Binding and Computational Analysis
por: Lipiński, Piotr F. J., et al.
Publicado: (2019) -
FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets
por: Floresta, Giuseppe, et al.
Publicado: (2018) -
Artificial Intelligence Technologies for COVID-19 De Novo Drug Design
por: Floresta, Giuseppe, et al.
Publicado: (2022)