Cargando…
Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things
Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end us...
Autores principales: | Thamilarasu, Geethapriya, Chawla, Shiven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539759/ https://www.ncbi.nlm.nih.gov/pubmed/31035611 http://dx.doi.org/10.3390/s19091977 |
Ejemplares similares
-
A Machine Learning Based Intrusion Detection System for Mobile Internet of Things
por: Amouri, Amar, et al.
Publicado: (2020) -
Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things’ Devices Security
por: Alotaibi, Yazeed, et al.
Publicado: (2023) -
An Anomaly Intrusion Detection for High-Density Internet of Things Wireless Communication Network Based Deep Learning Algorithms
por: Salman, Emad Hmood, et al.
Publicado: (2022) -
An Adaptive Intrusion Detection System in the Internet of Medical Things Using Fuzzy-Based Learning
por: Alalhareth, Mousa, et al.
Publicado: (2023) -
Hybridized bio-inspired intrusion detection system for Internet of Things
por: Singh, Richa, et al.
Publicado: (2023)