Cargando…
Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter
This paper presents ways of inductance sensitivity improvement in a quartz crystal converter for low inductance measurement. To improve the converter’s sensitivity, two quartz crystals that were connected in parallel and additional capacitance connected to the two quartz crystals in the oscillator’s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539773/ https://www.ncbi.nlm.nih.gov/pubmed/31083570 http://dx.doi.org/10.3390/s19092188 |
_version_ | 1783422468191420416 |
---|---|
author | Matko, Vojko Milanovic, Miro |
author_facet | Matko, Vojko Milanovic, Miro |
author_sort | Matko, Vojko |
collection | PubMed |
description | This paper presents ways of inductance sensitivity improvement in a quartz crystal converter for low inductance measurement. To improve the converter’s sensitivity, two quartz crystals that were connected in parallel and additional capacitance connected to the two quartz crystals in the oscillator’s circuit are used. The new approach uses a converter with special switchable oscillator and multiplexer switches to compensate for the crystal’s natural temperature-frequency characteristics and any other influences, such as parasitic capacitances and parasitic inductances, which reduce them to a minimum. The experimental results demonstrate improved sensitivity and well-compensated dynamic temperature influence on the converter’s output frequency. The fundamental quartz crystal frequency-temperature characteristics in the temperature range between 0–40 °C are simultaneously compensated. Furthermore, the converter enables the measurement of the influence of its own hysteresis at different values of inductances at the selected sensitivity by parallel capacitances connected either to the single- or dual-quartz crystal unit. The results show that the converter converting inductances in the range between 85–100 μH to a frequency range between 1–150 kHz only has ±0.05 ppm frequency instability (during the temperature change between 0–40 °C), which gives the converter a resolution of 1 pH. As a result, the converter can be applied where low inductance measurement, nondestructive testing, impedance change measurement, and magnetic material properties measurement are important. |
format | Online Article Text |
id | pubmed-6539773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65397732019-06-04 Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter Matko, Vojko Milanovic, Miro Sensors (Basel) Article This paper presents ways of inductance sensitivity improvement in a quartz crystal converter for low inductance measurement. To improve the converter’s sensitivity, two quartz crystals that were connected in parallel and additional capacitance connected to the two quartz crystals in the oscillator’s circuit are used. The new approach uses a converter with special switchable oscillator and multiplexer switches to compensate for the crystal’s natural temperature-frequency characteristics and any other influences, such as parasitic capacitances and parasitic inductances, which reduce them to a minimum. The experimental results demonstrate improved sensitivity and well-compensated dynamic temperature influence on the converter’s output frequency. The fundamental quartz crystal frequency-temperature characteristics in the temperature range between 0–40 °C are simultaneously compensated. Furthermore, the converter enables the measurement of the influence of its own hysteresis at different values of inductances at the selected sensitivity by parallel capacitances connected either to the single- or dual-quartz crystal unit. The results show that the converter converting inductances in the range between 85–100 μH to a frequency range between 1–150 kHz only has ±0.05 ppm frequency instability (during the temperature change between 0–40 °C), which gives the converter a resolution of 1 pH. As a result, the converter can be applied where low inductance measurement, nondestructive testing, impedance change measurement, and magnetic material properties measurement are important. MDPI 2019-05-11 /pmc/articles/PMC6539773/ /pubmed/31083570 http://dx.doi.org/10.3390/s19092188 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Matko, Vojko Milanovic, Miro Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter |
title | Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter |
title_full | Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter |
title_fullStr | Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter |
title_full_unstemmed | Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter |
title_short | Highly Enhanced Inductance Sensing Performance of Dual-Quartz Crystal Converter |
title_sort | highly enhanced inductance sensing performance of dual-quartz crystal converter |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539773/ https://www.ncbi.nlm.nih.gov/pubmed/31083570 http://dx.doi.org/10.3390/s19092188 |
work_keys_str_mv | AT matkovojko highlyenhancedinductancesensingperformanceofdualquartzcrystalconverter AT milanovicmiro highlyenhancedinductancesensingperformanceofdualquartzcrystalconverter |