Cargando…
Dynamic Response of Long Rectangular Floors Subjected to Periodic Force Excitation
Since damping in lightweight floors is usually low, dynamic amplification can be rather high. Long rectangular plates subjected to concentrated loads are often investigated by a replacement beam with a so called “effective width”. Although this approach is a reliable tool for static loads, the stead...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539810/ https://www.ncbi.nlm.nih.gov/pubmed/31052351 http://dx.doi.org/10.3390/ma12091417 |
Sumario: | Since damping in lightweight floors is usually low, dynamic amplification can be rather high. Long rectangular plates subjected to concentrated loads are often investigated by a replacement beam with a so called “effective width”. Although this approach is a reliable tool for static loads, the steady-state dynamic response of beams and long plates subjected to periodic loads are significantly different. The maximum displacements and accelerations of beams (and of not-long rectangular plates) are obtained by using a dynamic amplification factor, which in the case of resonance is equal to [Formula: see text] , where [Formula: see text] is the damping ratio. For long plates (and for not-long orthotropic rib-stiffened plates), as discussed in the paper, the response and the amplification factor are substantially different from those of beams. Hence, design based on effective width may lead to 2–4 times higher acceleration than the real values. In an economic design, to avoid unnecessary damping enhancement, this effect must be taken into account. |
---|