Cargando…
Design, Implementation and Power Analysis of Pervasive Adaptive Resourceful Smart Lighting and Alerting Devices in Developing Countries Supporting Incandescent and LED Light Bulbs
Nowadays, there is an increasing demand for energy saving techniques in residential, industrial, institutional, clinical and other multipurpose indoor and outdoor applications. Lights play an ubiquitous role around the Earth in all types of structures and outdoor surroundings. Hence, the authors pro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539815/ https://www.ncbi.nlm.nih.gov/pubmed/31052250 http://dx.doi.org/10.3390/s19092032 |
Sumario: | Nowadays, there is an increasing demand for energy saving techniques in residential, industrial, institutional, clinical and other multipurpose indoor and outdoor applications. Lights play an ubiquitous role around the Earth in all types of structures and outdoor surroundings. Hence, the authors propose a universal lighting control device—named Pervasive Adaptive Resourceful Smart Lighting and Alerting Device—accomplished mainly by the use of Arduino UNO R3. The Pervasive Adaptive Resourceful Smart Lighting and Alerting Device works in two modes, namely, light control and alert, by deploying the perceptive light automation and perceptive light automation with buzzer activation algorithms, respectively. The contributions of the paper are: a common lighting control solution for both incandescent and light emitting diode light bulbs for all indoor and outdoor environments. A profound power consumption analysis, and investigation of the proposed device by estimating the Energy Consumption Ratio (ECR) and Relative Energy Saving Ratio (RESR) through the real time deployment in diverse circumstances with 60 W incandescent, 8 W and 0.5 W LED light bulbs is executed. In addition to the evaluation of RESR and ECR characteristics the power consumption of light bulbs in terms of scalable conditions of number of light bulbs is also analyzed. The proposed model is proved to work efficiently for both incandescent and LED light bulbs. |
---|