Cargando…
Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways
A total of 85 strains of lactic acid bacteria were isolated from corn silage in this study and analyzed in vitro for their cholesterol removal, NPC1L1 protein down-regulation and bile salt deconjugation ability, respectively. Nineteen strains were selected for further analysis for their probiotic po...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539855/ https://www.ncbi.nlm.nih.gov/pubmed/31035460 http://dx.doi.org/10.3390/ijms20092073 |
_version_ | 1783422487873191936 |
---|---|
author | Ma, Changlu Zhang, Shuwen Lu, Jing Zhang, Cai Pang, Xiaoyang Lv, Jiaping |
author_facet | Ma, Changlu Zhang, Shuwen Lu, Jing Zhang, Cai Pang, Xiaoyang Lv, Jiaping |
author_sort | Ma, Changlu |
collection | PubMed |
description | A total of 85 strains of lactic acid bacteria were isolated from corn silage in this study and analyzed in vitro for their cholesterol removal, NPC1L1 protein down-regulation and bile salt deconjugation ability, respectively. Nineteen strains were selected for further analysis for their probiotic potential. Finally, 3 strains showing better probiotic potential were evaluated for their cholesterol-lowering activity in hamsters. The strains showing the greater cholesterol removal and NPC1L1 protein down-regulation activity had no significant effects on serum and hepatic cholesterol levels in hamsters (p > 0.05). However, Lactobacillus plantarum CAAS 18008 (1 × 10(9) CFU/d) showing the greater bile salt deconjugation ability significantly reduced serum low-density lipoprotein cholesterol, total cholesterol, and hepatic total cholesterol levels by 28.8%, 21.7%, and 30.9%, respectively (p < 0.05). The cholesterol-lowering mechanism was attributed to its bile salt hydrolase activity, which enhanced daily fecal bile acid excretion levels and thereby accelerated new bile acid synthesis from cholesterol in liver. This study demonstrated that the strains showing greater cholesterol removal and NPC1L1 protein down-regulation activity in vitro hardly reveal cholesterol-lowering activity in vivo, whereas the strains showing greater bile salt deconjugation ability in vitro has large potential to decrease serum cholesterol levels in vivo. |
format | Online Article Text |
id | pubmed-6539855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65398552019-06-04 Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways Ma, Changlu Zhang, Shuwen Lu, Jing Zhang, Cai Pang, Xiaoyang Lv, Jiaping Int J Mol Sci Article A total of 85 strains of lactic acid bacteria were isolated from corn silage in this study and analyzed in vitro for their cholesterol removal, NPC1L1 protein down-regulation and bile salt deconjugation ability, respectively. Nineteen strains were selected for further analysis for their probiotic potential. Finally, 3 strains showing better probiotic potential were evaluated for their cholesterol-lowering activity in hamsters. The strains showing the greater cholesterol removal and NPC1L1 protein down-regulation activity had no significant effects on serum and hepatic cholesterol levels in hamsters (p > 0.05). However, Lactobacillus plantarum CAAS 18008 (1 × 10(9) CFU/d) showing the greater bile salt deconjugation ability significantly reduced serum low-density lipoprotein cholesterol, total cholesterol, and hepatic total cholesterol levels by 28.8%, 21.7%, and 30.9%, respectively (p < 0.05). The cholesterol-lowering mechanism was attributed to its bile salt hydrolase activity, which enhanced daily fecal bile acid excretion levels and thereby accelerated new bile acid synthesis from cholesterol in liver. This study demonstrated that the strains showing greater cholesterol removal and NPC1L1 protein down-regulation activity in vitro hardly reveal cholesterol-lowering activity in vivo, whereas the strains showing greater bile salt deconjugation ability in vitro has large potential to decrease serum cholesterol levels in vivo. MDPI 2019-04-26 /pmc/articles/PMC6539855/ /pubmed/31035460 http://dx.doi.org/10.3390/ijms20092073 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Changlu Zhang, Shuwen Lu, Jing Zhang, Cai Pang, Xiaoyang Lv, Jiaping Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways |
title | Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways |
title_full | Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways |
title_fullStr | Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways |
title_full_unstemmed | Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways |
title_short | Screening for Cholesterol-Lowering Probiotics from Lactic Acid Bacteria Isolated from Corn Silage Based on Three Hypothesized Pathways |
title_sort | screening for cholesterol-lowering probiotics from lactic acid bacteria isolated from corn silage based on three hypothesized pathways |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539855/ https://www.ncbi.nlm.nih.gov/pubmed/31035460 http://dx.doi.org/10.3390/ijms20092073 |
work_keys_str_mv | AT machanglu screeningforcholesterolloweringprobioticsfromlacticacidbacteriaisolatedfromcornsilagebasedonthreehypothesizedpathways AT zhangshuwen screeningforcholesterolloweringprobioticsfromlacticacidbacteriaisolatedfromcornsilagebasedonthreehypothesizedpathways AT lujing screeningforcholesterolloweringprobioticsfromlacticacidbacteriaisolatedfromcornsilagebasedonthreehypothesizedpathways AT zhangcai screeningforcholesterolloweringprobioticsfromlacticacidbacteriaisolatedfromcornsilagebasedonthreehypothesizedpathways AT pangxiaoyang screeningforcholesterolloweringprobioticsfromlacticacidbacteriaisolatedfromcornsilagebasedonthreehypothesizedpathways AT lvjiaping screeningforcholesterolloweringprobioticsfromlacticacidbacteriaisolatedfromcornsilagebasedonthreehypothesizedpathways |