Cargando…
Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes
In this study, machine learning algorithms (MLA) were employed to predict and classify the tensile strength of polymeric films of different compositions as a function of processing conditions. Two film production techniques were investigated, namely compression molding and extrusion-blow molding. Mu...
Autores principales: | Altarazi, Safwan, Allaf, Rula, Alhindawi, Firas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539900/ https://www.ncbi.nlm.nih.gov/pubmed/31067762 http://dx.doi.org/10.3390/ma12091475 |
Ejemplares similares
-
Residual Strength Prediction of Aluminum Panels with Multiple Site Damage Using Artificial Neural Networks
por: Hijazi, Ala, et al.
Publicado: (2020) -
Predictive Modeling of Tensile Strength in Aluminum Alloys via Machine Learning
por: Fu, Keya, et al.
Publicado: (2023) -
Splitting tensile strength prediction of Metakaolin concrete using machine learning techniques
por: Li, Qiang, et al.
Publicado: (2023) -
Effect of De-Twinning on Tensile Strength of Nano-Twinned Cu Films
por: Lee, Chia-Hung, et al.
Publicado: (2021) -
Tensile Strength Statistics of High-Performance Mono- and Multifilament Polymeric Materials: On the Validity of Normality
por: Boiko, Yuri M., et al.
Publicado: (2023)