Cargando…
IL-1β Damages Fibrocartilage and Upregulates MMP-13 Expression in Fibrochondrocytes in the Condyle of the Temporomandibular Joint
The temporomandibular joint (TMJ), which differs anatomically and biochemically from hyaline cartilage-covered joints, is an under-recognized joint in arthritic disease, even though TMJ damage can have deleterious effects on physical appearance, pain and function. Here, we analyzed the effect of IL-...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539937/ https://www.ncbi.nlm.nih.gov/pubmed/31067826 http://dx.doi.org/10.3390/ijms20092260 |
Sumario: | The temporomandibular joint (TMJ), which differs anatomically and biochemically from hyaline cartilage-covered joints, is an under-recognized joint in arthritic disease, even though TMJ damage can have deleterious effects on physical appearance, pain and function. Here, we analyzed the effect of IL-1β, a cytokine highly expressed in arthritic joints, on TMJ fibrocartilage-derived cells, and we investigated the modulatory effect of mechanical loading on IL-1β-induced expression of catabolic enzymes. TMJ cartilage degradation was analyzed in 8–11-week-old mice deficient for IL-1 receptor antagonist (IL-1RA(−/−)) and wild-type controls. Cells were isolated from the juvenile porcine condyle, fossa, and disc, grown in agarose gels, and subjected to IL-1β (0.1–10 ng/mL) for 6 or 24 h. Expression of catabolic enzymes (ADAMTS and MMPs) was quantified by RT-qPCR and immunohistochemistry. Porcine condylar cells were stimulated with IL-1β for 12 h with IL-1β, followed by 8 h of 6% dynamic mechanical (tensile) strain, and gene expression of MMPs was quantified. Early signs of condylar cartilage damage were apparent in IL-1RA(−/−) mice. In porcine cells, IL-1β strongly increased expression of the aggrecanases ADAMTS4 and ADAMTS5 by fibrochondrocytes from the fossa (13-fold and 7-fold) and enhanced the number of MMP-13 protein-expressing condylar cells (8-fold). Mechanical loading significantly lowered (3-fold) IL-1β-induced MMP-13 gene expression by condylar fibrochondrocytes. IL-1β induces TMJ condylar cartilage damage, possibly by enhancing MMP-13 production. Mechanical loading reduces IL-1β-induced MMP-13 gene expression, suggesting that mechanical stimuli may prevent cartilage damage of the TMJ in arthritic patients. |
---|