Cargando…

Window-Based Constant Beamwidth Beamformer

Beamformers have been widely used to enhance signals from a desired direction and suppress noise and interfering signals from other directions. Constant beamwidth beamformers enable a fixed beamwidth over a wide range of frequencies. Most of the existing approaches to design constant beamwidth beamf...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Tao, Cohen, Israel, Berdugo, Baruch, Yang, Yan, Chen, Jingdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539959/
https://www.ncbi.nlm.nih.gov/pubmed/31064067
http://dx.doi.org/10.3390/s19092091
Descripción
Sumario:Beamformers have been widely used to enhance signals from a desired direction and suppress noise and interfering signals from other directions. Constant beamwidth beamformers enable a fixed beamwidth over a wide range of frequencies. Most of the existing approaches to design constant beamwidth beamformers are based on optimization algorithms with high computational complexity and are often sensitive to microphone mismatches. Other existing methods are based on adjusting the number of sensors according to the frequency, which simplify the design, but cannot control the sidelobe level. Here, we propose a window-based technique to attain the beamwidth constancy, in which different shapes of standard window functions are applied for different frequency bins as the real weighting coefficients of microphones. Thereby, not only do we keep the beamwidth constant, but we also control the sidelobe level. Simulation results show the advantages of our method compared with existing methods, including lower sidelobe level, higher directivity factor, and higher white noise gain.