Cargando…
Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees
The presence of defects like gas bubble in fabricated parts is inherent in the selective laser sintering process and the prediction of bubble shrinkage dynamics is crucial. In this paper, two artificial intelligence (AI) models based on Decision Trees algorithm were constructed in order to predict b...
Autores principales: | Ly, Hai-Bang, Monteiro, Eric, Le, Tien-Thinh, Le, Vuong Minh, Dal, Morgan, Regnier, Gilles, Pham, Binh Thai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539969/ https://www.ncbi.nlm.nih.gov/pubmed/31083456 http://dx.doi.org/10.3390/ma12091544 |
Ejemplares similares
-
Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression
por: Le, Lu Minh, et al.
Publicado: (2019) -
Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials
por: Ly, Hai-Bang, et al.
Publicado: (2019) -
Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete
por: Dao, Dong Van, et al.
Publicado: (2019) -
Cost-Effective Approaches Based on Machine Learning to Predict Dynamic Modulus of Warm Mix Asphalt with High Reclaimed Asphalt Pavement
por: Dao, Dong Van, et al.
Publicado: (2020) -
Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete
por: Dao, Dong Van, et al.
Publicado: (2020)