Cargando…
A Convolution Component-Based Method with Attention Mechanism for Travel-Time Prediction
Deep learning approaches have been recently applied to traffic prediction because of their ability to extract features of traffic data. While convolutional neural networks may improve the predictive accuracy by transiting traffic data to images and extracting features in the images, the convolutiona...
Autores principales: | Ran, Xiangdong, Shan, Zhiguang, Fang, Yufei, Lin, Chuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540036/ https://www.ncbi.nlm.nih.gov/pubmed/31058812 http://dx.doi.org/10.3390/s19092063 |
Ejemplares similares
-
An LSTM-Based Method with Attention Mechanism for Travel Time Prediction
por: Ran, Xiangdong, et al.
Publicado: (2019) -
Towards Attention-Based Convolutional Long Short-Term Memory for Travel Time Prediction of Bus Journeys
por: Wu, Jianqing, et al.
Publicado: (2020) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
An attention-based recurrent learning model for short-term travel time prediction
por: Chughtai, Jawad-ur-Rehman, et al.
Publicado: (2022) -
A method of radar echo extrapolation based on dilated convolution and attention convolution
por: Shen, Xiajiong, et al.
Publicado: (2022)