Cargando…
Revealing Drug-Target Interactions with Computational Models and Algorithms
Background: Identifying possible drug-target interactions (DTIs) has become an important task in drug research and development. Although high-throughput screening is becoming available, experimental methods narrow down the validation space because of extremely high cost, low success rate, and time c...
Autores principales: | Zhou, Liqian, Li, Zejun, Yang, Jialiang, Tian, Geng, Liu, Fuxing, Wen, Hong, Peng, Li, Chen, Min, Xiang, Ju, Peng, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540161/ https://www.ncbi.nlm.nih.gov/pubmed/31052598 http://dx.doi.org/10.3390/molecules24091714 |
Ejemplares similares
-
Probing lncRNA–Protein Interactions: Data Repositories, Models, and Algorithms
por: Peng, Lihong, et al.
Publicado: (2020) -
Identifying potential drug-target interactions based on ensemble deep learning
por: Zhou, Liqian, et al.
Publicado: (2023) -
Prioritizing antiviral drugs against SARS-CoV-2 by integrating viral complete genome sequences and drug chemical structures
por: Peng, Lihong, et al.
Publicado: (2021) -
Identifying Effective Antiviral Drugs Against SARS-CoV-2 by Drug Repositioning Through Virus-Drug Association Prediction
por: Peng, Lihong, et al.
Publicado: (2020) -
Identifying Small Molecule-miRNA Associations Based on Credible Negative Sample Selection and Random Walk
por: Liu, Fuxing, et al.
Publicado: (2020)