Cargando…
Large-Scale, Fine-Grained, Spatial, and Temporal Analysis, and Prediction of Mobile Phone Users’ Distributions Based upon a Convolution Long Short-Term Model
Accurate and timely estimations of large-scale population distributions are a valuable input for social geography and economic research and for policy-making. The most popular large-scale method to calculate such estimations uses mobile phone data. We propose a novel method, firstly based upon using...
Autores principales: | Zhang, Guangyuan, Rui, Xiaoping, Poslad, Stefan, Song, Xianfeng, Fan, Yonglei, Ma, Zixiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540164/ https://www.ncbi.nlm.nih.gov/pubmed/31075941 http://dx.doi.org/10.3390/s19092156 |
Ejemplares similares
-
Using an Internet of Behaviours to Study How Air Pollution Can Affect People’s Activities of Daily Living: A Case Study of Beijing, China
por: Zhang, Guangyuan, et al.
Publicado: (2021) -
A Spatial–Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM(2.5) Concentration Prediction
por: Lin, Shaofu, et al.
Publicado: (2022) -
The temporal network of mobile phone users in Changchun Municipality, Northeast China
por: Du, Zhanwei, et al.
Publicado: (2018) -
Design and Test of a Hybrid Foot Force Sensing and GPS System for Richer User Mobility Activity Recognition
por: Zhang, Zelun, et al.
Publicado: (2013) -
Spatial Hearing by Bilateral Cochlear Implant Users With Temporal Fine-Structure Processing
por: Ausili, Sebastián A., et al.
Publicado: (2020)