Cargando…
Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City
The increasing development of urban centers brings serious challenges for traffic management. In this paper, we introduce a smart visual sensor, developed for a pilot project taking place in the Australian city of Liverpool (NSW). The project’s aim was to design and evaluate an edge-computing device...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540244/ https://www.ncbi.nlm.nih.gov/pubmed/31052514 http://dx.doi.org/10.3390/s19092048 |
Sumario: | The increasing development of urban centers brings serious challenges for traffic management. In this paper, we introduce a smart visual sensor, developed for a pilot project taking place in the Australian city of Liverpool (NSW). The project’s aim was to design and evaluate an edge-computing device using computer vision and deep neural networks to track in real-time multi-modal transportation while ensuring citizens’ privacy. The performance of the sensor was evaluated on a town center dataset. We also introduce the interoperable Agnosticity framework designed to collect, store and access data from multiple sensors, with results from two real-world experiments. |
---|