Cargando…
An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery
As tea is an important economic crop in many regions, efficient and accurate methods for remotely identifying tea plantations are essential for the implementation of sustainable tea practices and for periodic monitoring. In this study, we developed and tested a method for tea plantation identificati...
Autores principales: | Zhu, Jun, Pan, Ziwu, Wang, Hang, Huang, Peijie, Sun, Jiulin, Qin, Fen, Liu, Zhenzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540259/ https://www.ncbi.nlm.nih.gov/pubmed/31060327 http://dx.doi.org/10.3390/s19092087 |
Ejemplares similares
-
Monitoring tea plantations during 1990–2022 using multi-temporal satellite data in Assam (India)
por: Parida, Bikash Ranjan, et al.
Publicado: (2023) -
Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries
por: Zhou, Xin-Xing, et al.
Publicado: (2022) -
Predation Pressure in Tea (Camellia sinensis) Plantations in Southeastern China Measured by the Sentinel Prey Method
por: Imboma, Titus S., et al.
Publicado: (2020) -
Optimal Bands Combination Selection for Extracting Garlic Planting Area with Multi-Temporal Sentinel-2 Imagery
por: Wu, Shuang, et al.
Publicado: (2021) -
Potential to Reduce Chemical Fertilizer Application in Tea Plantations at Various Spatial Scales
por: Xie, Shaowen, et al.
Publicado: (2022)